Skip to main content
Log in

Deformation of whisker-reinforced metal-matrix composites under changing temperature conditions

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A numerical technique for simulating the plastic response of whisker-reinforced metal-matrix composites under conditions of changing temperature and applied stress is developed. The model simulates an elastic-plastic (diffusion-controlled power-law creep) matrix and elastic whiskers, with variable whisker length and spacing. To test this model, the mechanical behavior of a metal-matrix composite of 6061 aluminum, reinforced with 20 vol pct discontinuous, oriented silicon carbide whiskers was studied under conditions of repeated temperature cycling and isothermal creep. The results of the thermal-cycling experiments are compared to those of the model. Both the experiments and the model demonstrate that the composite flw stress may be significantly reduced by thermal cycling (relative to isothermal, elevated temperature behavior) and that under appropriate conditions, the composite strain rate is proportional to the applied stress. Also, agreement between the experimental results and the first-principles model is very good in terms of both magnitude and trends, despite simplifications in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Y. Wu, J. Wadsworth, and O.D. Sherby:Metall. Trans. A, 1987, vol. 18A, pp. 451–62.

    CAS  Google Scholar 

  2. S.H. Hong, O.D. Sherby, A.P. Divetcha, S.D. Karmarkar, and B.A. MacDonald:J. Compos. Mater., 1988, vol. 22, pp. 102–23.

    Article  CAS  Google Scholar 

  3. J.C. Le Flour and R. Locicero:Scripta Metall., 1987, vol. 21, pp. 1071–76.

    Article  Google Scholar 

  4. G.W. Greenwood and R.H. Johnson:Proc. R. Soc. London A, 1965, vol. 283, pp. 403–22.

    Article  Google Scholar 

  5. MRS Symp. Proc. In Situ Composites IV, F.D. Lemkey, H.E. Cline, and M. McLean, eds., Elsevier Publishing, New York, NY, 1982.

    Google Scholar 

  6. G. Garmong and C.G. Rhodes:Proc. Conf. on In-Situ Composites, Vol. I, National Academy of Sciences, 1973, p. 251.

  7. K.A. Padmanabhan and G.J. Davies.Superplasticity, Springer-Verlag, Heidelberg, 1980, pp. 201–25.

    Google Scholar 

  8. J.W. Edington, N.K. Melton, and C.P. Cutler:Prog. Mater. Sci., 1976, vol. 21, pp. 61–158.

    Article  CAS  Google Scholar 

  9. R.H. Johnson:Metall. Rev., 1970, vol. 146, pp. 115–34.

    Google Scholar 

  10. F.W. Clinard and O.D. Sherby:Acta Metall., 1964, vol. 12, pp. 911–19.

    Article  CAS  Google Scholar 

  11. E. Gautier, A. Simon, and G. Beck:Acta Metall., 1987, vol. 35, pp. 1367–75.

    Article  CAS  Google Scholar 

  12. M.Y. Wu and O.D. Sherby:Scripta Metall., 1984, vol. 18, pp. 773–76.

    Article  CAS  Google Scholar 

  13. S.T. Kenobeevsky, N.F. Pravdyk, and V.I. Kutaistev:Geneva Conf. on Atomic Energy, paper no. 681, 1955.

  14. Richard A. Kot and Volker Weiss:Metall. Trans., 1970, vol. 1, pp. 2685–93.

    CAS  Google Scholar 

  15. R.C. Lobb, E.C. Sykes, and R.H. Johnson:Met. Sci., 1972, vol. 6, pp. 33–39.

    Article  CAS  Google Scholar 

  16. S.T. Zegler, R.M. Mayfield, and M.H. Mueller:Trans. ASM, 1958, vol. 50, pp. 905–25.

    Google Scholar 

  17. R.M. Mayfield:Trans. ASM, 1958, vol. 50, pp. 926–42.

    Google Scholar 

  18. J.E. Burke and A.M. Turkalo:Trans. ASM, 1958, vol. 50, pp. 943–53.

    Google Scholar 

  19. L.T. Lloyd and R.M. Mayfield:Trans. ASM, 1958, vol. 50, pp. 954–80.

    Google Scholar 

  20. W. Boas and R.W.K. Honeycombe:Proc. R. Soc., London A, 1946, vol. 186, pp. 57–71.

    CAS  Google Scholar 

  21. R.W.K. Honeycombe:Deformation in Metals, Edward Arnold Limited, London, 1984, pp. 349–53.

    Google Scholar 

  22. J.E. Burke and A.M. Turkalo:J. Met., 1952, vol. 4, pp. 651–56.

    CAS  Google Scholar 

  23. S.F. Pugh:J. Inst. Met., 1957, vol. 86, pp. 497–503.

    Google Scholar 

  24. S. Daniels: Master's Research Report, Stanford University, Stanford, CA, 1985.

    Google Scholar 

  25. G. González, S.D. Karmarkar, A.P. Divetcha, and O.D. Sherby:Composites Science and Technology, in press.

  26. M.Y. Wu: Ph.D. Thesis, Stanford University, Stanford, CA, 1984.

  27. F. Garofalo:Trans. ASM-AIME, 1963, vol. 227, pp. 351–56.

    Google Scholar 

  28. S.T. Kenobeevsky, N.F. Pravdyk, and V.I. Kutaistev:Geneva Conf. on Atomic Energy, paper no. 681, 1955.

  29. A.C. Roberts and A.H. Cottrell:Phil. Mag., 1956, vol. 1, pp. 711–17.

    Article  CAS  Google Scholar 

  30. R.G. Anderson and J.F.W. Bishop:Inst. of Metals Symp. on Uranium and Graphite, The Institute of Metals, London, 1962, pp. 17–23.

    Google Scholar 

  31. W.S. Blackburn, G. Harnby, and J.J. Stobo:J. Nucl. Energy, Part A, 1960, vol. 12, pp. 162–71.

    Article  Google Scholar 

  32. M. Levy:Compt. Rend. Acad. Sci. Paris, 1870, vol. 70, p. 1323.

    Google Scholar 

  33. R. von Mises:Gottinger Nachr. Math. Phys. Klasse, 1913, p. 582.

  34. G.S. Daehn, and T. Oyama:Scripta Metall., 1988, vol. 22, pp. 1097–102.

    Article  CAS  Google Scholar 

  35. D. McLean:J. Mater. Sci., 1972, vol. 7, pp. 98–104.

    Article  CAS  Google Scholar 

  36. H. Luthy, A.K. Miller, and O.D. Sherby:Acta Metall., 1980, vol. 28, pp. 169–78.

    Article  CAS  Google Scholar 

  37. T.S. Lundy and J.F. Murdock:J. Appl. Phys., 1962, vol. 33, pp. 1671–73.

    Article  CAS  Google Scholar 

  38. M. Beyeler and Y. Adda:J. Phys., 1968, vol. 29, p. 345.

    CAS  Google Scholar 

  39. T.E. Volin, K.H. Lie, and R.W. Balluffi:Acta Metall., 1971, vol. 19, pp. 263–74.

    Article  CAS  Google Scholar 

  40. P.M. Sargent and M.F. Ashby:Scripta Metall., vol. 17, pp. 951–57.

  41. W. Koster:Z. Metallkd., 1948, vol. 39, p. 1.

    CAS  Google Scholar 

  42. CRC Handbook of Chemistry and Physics, 61st ed., CRC Press, Boca Raton, FL, 1980.

  43. Silicon Carbide, A. Taylor, R.M. Jones, J.R. O'Connor, and J. Smiltens, eds., Pergamon Press, Oxford, 1960, p. 147.

    Google Scholar 

  44. G. Garmong:Metall. Trans., 1974, vol. 5, pp. 2183–90.

    Article  CAS  Google Scholar 

  45. G. Garmong:Metall. Trans., 1974, vol. 5, pp. 2191–97.

    Article  CAS  Google Scholar 

  46. G.S. Daehn: inThermal Mechanical Behavior of Ceramic and Metal Matrix Composites, ASTM, Philadelphia, PA, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daehn, G.S., González-Doncel, G. Deformation of whisker-reinforced metal-matrix composites under changing temperature conditions. Metall Trans A 20, 2355–2368 (1989). https://doi.org/10.1007/BF02666670

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666670

Keywords

Navigation