Skip to main content
Log in

Elastic-plastic analysis of deformation induced by thermal stress in eutectic composites: I. theory

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Understanding the deformation of eutectic composites under conditions of changing temperature with or without externally applied loading is important to the utilization of these materials. Here a method of calculating elastic-plastic deformation parameters in such materials is derived and its use demonstrated. The method uses stress equilibrium, strain continuity, and component constitutive relations to derive expressions for matrix stress as a function of temperature during heating and cooling or hold time at constant temperature. From that quantity several deformation parameters of interest can be calculated. Because numerical techniques must be used to determine solutions, great flexibility is available in the selection of cycling conditions and material constants. An illustrative calculation is presented and its results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Chawla:Metallography, 1973, vol. 6, p. 155.

    Article  CAS  Google Scholar 

  2. G. Garmong and C. G. Rhodes:Conf. on In-Situ Composites, Lakeville, Conn., vol. I, p. 251, National Academy of Sciences-National Academy of Engineering, Washington, 1973.

    Google Scholar 

  3. H. Bibring:Conf. on In-Situ Composites, vol. II, p. 1.

  4. E. M. Breinan, E. R. Thompson, and F. D. Lemkey: Conf. on In-Situ Composites, vol. II, p. 201.

  5. D.A. Koss and S.M. Copley:Met. Trans., 1971, vol. 2, p. 1557.

    Article  CAS  Google Scholar 

  6. E. Scala:Fiber Composite Materials, p. 131, American Society for Metals, Metals Park, Ohio, 1965.

    Google Scholar 

  7. R. A. Schapery:J Comp. Mater., 1968, vol. 2, p. 380.

    Article  Google Scholar 

  8. G. J. Dvorak, M. S. M. Rao, and J. Q. Tarn:J. Comp. Mater., 1973, vol. 7, p. 194.

    Article  CAS  Google Scholar 

  9. C. A. Hoffman:J. Eng. Mater. Tech., 1973, vol. 95, series H, p. 47.

    Article  CAS  Google Scholar 

  10. C. A. Hoffman:J. Eng. Mater. Tech., 1973, vol. 95, series H, p. 55.

    Article  CAS  Google Scholar 

  11. A. R. T. de Silva and G. A. Chadwick:J. Mech. Phys. Solids, 1969, vol. 17, p. 387.

    Article  Google Scholar 

  12. Amiya K. Mukherjee, James E. Bird, and John E. Dorn:Trans. ASM, 1969, vol. 62, p. 155.

    CAS  Google Scholar 

  13. J. Gittus:Phil. Mag., 1971, vol. 24, p. 1423.

    Article  Google Scholar 

  14. Clarence M. Zener:Elasticity and Anelasticity of Metals, p. 42, University of Chicago Press, Chicago, 1948.

    Google Scholar 

  15. S. S. Manson:Thermal Stress and Low-Cycle Fatigue, p. 132, McGraw-Hill, New York, 1966.

    Google Scholar 

  16. G. Garmong:Met. Trans., 1974, vol. 5, pp. 2199–2205.

    Article  Google Scholar 

  17. G. Garmong:Met. Trans., 1974, vol. 5, pp. 2191–97.

    Article  CAS  Google Scholar 

  18. R. Hill:Mathematical Theory of Plasticity, p. 45, Oxford University Press, Oxford, 1950.

    Google Scholar 

  19. Oscar Hoffman and George Sachs:Introduction to the Theory of Plasticity for Engineers, p. 52, McGraw-Hill, New York, 1953.

    Google Scholar 

  20. Oscar Hoffman and George Sachs: Plasticity for Engineers, pp. 17 and 28.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garmong, G. Elastic-plastic analysis of deformation induced by thermal stress in eutectic composites: I. theory. Metall Trans 5, 2183–2190 (1974). https://doi.org/10.1007/BF02643932

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643932

Keywords

Navigation