Skip to main content
Log in

Quantitative Characterization of Grain Boundaries in Ultrafine-Grained Austenitic Stainless Steel by Cluster Analysis

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

A method is proposed for analyzing the relative energy distributions of grain boundaries in ultrafine-grained materials measured by grain boundary grooving using a scanning tunneling microscope. The grain boundary energy distribution in a grain boundary ensemble is considered as a superposition of individual distributions or populations, which can be identified by cluster analysis based on statistical criteria and each of which has its own average energy, variance, and share in the total distribution. The analysis is performed for 12Cr15Mn9NiCu steel with a coarse-grained structure in the as-received state and with an ultrafine-grained structure produced by hot helical rolling and subsequent cold rolling. It is shown that the number of boundary populations and their main characteristics revealed by clustering depend on the steel structure. The results of cluster analysis of experimental distributions are compared with the EBSD measurement data on grain boundary misorientation distributions. Discrepancy between the clustering results for the energy and misorientation distributions of grain boundaries is discussed taking into account the difference in the type of information obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Valiev, R.Z. and Alexandrov, I.V., Nanostructured Materials Produced by Severe Plastic Deformation, M.: Logos, 2000.

  2. Zhu, Y.T., Langdon, T.G., Valiev, R.Z., Semiatin, S.L., Shin, D.H., and Lowe, T.C., Ultrafine Grained Materials III, The Minerals, Metals & Materials Society, 2004. https://www.tms.org/pubs/Books/PDFs/01-5239/01-5239-0.pdf

  3. Gleiter, H., Nanostructured Materials: Basic Concepts and Microstructure, Acta Mater., 2000, vol. 48, pp. 1–29. https://doi.org/10.1016/S1359-6454(99)00285-2

    Article  ADS  Google Scholar 

  4. Baretzky, B., Baró, M.D., Grabovetskaya, G.P., Gubicza, J., Ivanov, M.B., Kolobov, Yu.R., Langdon, T.G., Lendvai, J., Lipnitskii, A G., Mazilkin, A.A., Nazarov, A.A., Nogués, J., Ovidko, I.A., Protasova, S.G., Raab, G.I., Révész, Á., Skiba, N.V., Sort, J., Starink, M.J., Straumal, B.B., Suriñach, S., Ungár, T., and Zhilyaev, A.P., Fundamentals of Interface Phenomena in Advanced Bulk Nanoscale Materials, Rev. Adv. Mater. Sci., 2005, vol. 9, pp. 45–108. http://eprints.soton.ac.uk/id/eprint/23812

    Google Scholar 

  5. Popov, V.V., Popova, E.N., Stolbovskiy, A.V., and Pilyugin, V.P., Thermal Stability of Nanocrystalline Structure in Niobium Processed by High Pressure Torsion at Cryogenic Temperatures, Mater. Sci. Eng. A, 2011, vol. 528, no. 3, pp. 1491–1496. https://doi.org/10.1016/j.msea.2010.10.052

    Article  Google Scholar 

  6. Lu, K., Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures, Nat. Rev. Mater., 2016, vol. 1, pp. 1–13. https://doi.org/10.1038/natrevmats.2016.19

    Article  ADS  Google Scholar 

  7. Kimura, Y., Inoue, T., Yin, F., and Tsuzaki, K., Inverse Temperature Dependence of Toughness in an Ultrafine Grain-Structure Steel, Science, 2008, vol. 320, pp. 1057–1060. https://doi.org/10.1126/science.1156084

    Article  ADS  Google Scholar 

  8. Trusov, P.V., Sharifullina, E.R., and Shveykin, A.I., Multilevel Model for the Description of Plastic and Superplastic Deformation of Polycrystalline Materials, Phys. Mesomech., 2019, vol. 22, no. 5, pp. 402–419. https://doi.org/10.1134/S1029959919050072

    Article  Google Scholar 

  9. Read, W.T. and Shockley, W., Dislocation Models of Crystal Grain Boundaries, Phys. Rev., 1950, vol. 78, no. 3, pp. 275–289. https://doi.org/10.1103/PhysRev.78.275

    Article  ADS  Google Scholar 

  10. Rohrer, G.S., Grain Boundary Energy Anisotropy: A Review, J. Mater. Sci., 2011, vol. 46, pp. 5881–5895. https://doi.org/10.1007/s10853-011-5677-3

    Article  ADS  Google Scholar 

  11. Maki, T., Morphology and Substructure of Martensite in Steels, Phase Transform. Steels, 2012, vol. 2, pp. 34–58. https://doi.org/10.1533/9780857096111.1.34

    Article  Google Scholar 

  12. Nesterova, E.V., Rubtsov, A.S., Rybin, V.R., and Zolotorevsky, N.Yu., High-Angle Boundaries Formed during Phase Transformations, Poverkhn. Fiz. Khim. Mekh., 1982, no. 5, pp. 30–35.

    Google Scholar 

  13. Kronberg, M.L. and Wilson, F.N., Structure of High Angle Grain Boundaries, Trans. AIME, 1949, vol. 185, pp. 506–508.

    Google Scholar 

  14. Watanabe, T., Grain Boundary Engineering: Historical Perspective and Future Prospects, J. Mater. Sci., 2011, vol. 46, pp. 4095–4115. https://doi.org/10.1007/s10853-011-5393-z

    Article  ADS  Google Scholar 

  15. Brandon, D.G., The Structure of High-Angle Grain Boundaries, Acta Metall., 1966, vol. 14, no. 11, pp. 1479–1484. https://doi.org/10.1016/0001-6160(66)90168-4

    Article  Google Scholar 

  16. Liu, X., Choi, D., Beladi, H., Nuhfer, N.T., Rohrer, G.S., and Barmakc, K., The Five Parameter Grain Boundary Character Distribution of Nanocrystalline Tungsten, Scripta Mater., 2013, vol. 69, pp. 413–416. https://doi.org/10.1016/j.scriptamat.2013.05.046

    Article  Google Scholar 

  17. Humphreys, F.J., Grain and Subgrain Characterisation by Electron Backscatter Diffraction: Review, J. Mater. Sci., 2001, vol. 36, pp. 3833–3854.

    Article  ADS  Google Scholar 

  18. Morawiec, A., Method to Calculate the Grain Boundary Energy Distribution over the Space of Macroscopic Boundary Parameters from the Geometry of Triple Junctions, Acta Mater., 2000, vol. 48, pp. 3525–3532. https://doi.org/10.1016/S1359-6454(00)00126-9

    Article  ADS  Google Scholar 

  19. Zaefferer, S.A., Critical Review of Orientation Microscopy in SEM and TEM, Cryst. Res. Technol., 2011, vol. 46, no. 6, pp. 607–628. https://doi.org/10.1002/CRAT.201100125

    Article  Google Scholar 

  20. Herring, W.C., Surface Tension as a Motivation for Sintering, in The Physics of Powder Metallurgy, Kingston, W.E., Ed., New York: McGraw-Hill, 1951, pp. 143–178.

  21. Haremski, P., Epple, L., Wieler, M., Lupetin, P., Thelen, R., and Hoffmann, M.J., A Thermal Grooving Study of Relative Grain Boundary Energies of Nickel in Polycrystalline Ni and in a Ni/YSZ Anode Measured by Atomic Force Microscopy, Acta Mater., 2021, vol. 214, p. 116936. https://doi.org/10.1016/j.actamat.2021.116936

    Article  Google Scholar 

  22. Mullins, W.W., Theory of Thermal Grooving, J. Appl. Phys., 1957, vol. 28, pp. 333. https://doi.org/10.1063/1.1722742

    Article  ADS  Google Scholar 

  23. Zimmerman, J., Sharma, A., Divinski, S.V., and Rabkin, E., Relative Grain Boundary Energies in Ultrafine Grain Ni Obtained by High Pressure Torsion, Scripta Mater., 2020, vol. 182, pp. 90–93. https://doi.org/10.1016/j.scriptamat.2020.03.008

    Article  Google Scholar 

  24. Han, J., Vitek, V., and Srolovitz, D.J., Grain-Boundary Metastability and Its Statistical Properties, Acta Mater., 2016, vol. 104, pp. 259–273. https://doi.org/10.1016/j.actamat.2015.11.035

    Article  Google Scholar 

  25. Olmsted, D.L., Foiles, S.M., and Holm, E.A., Survey of Computed Grain Boundary Properties in Face-Centered Cubic Metals: I. Grain Boundary Energy, Acta Mater., 2009, vol. 57, pp. 3694–3703. https://doi.org/10.1016/j.actamat.2009.04.007

    Article  ADS  Google Scholar 

  26. Geels, K., Fowler, D., Kopp, W., and Rückert, M., Metallographic and Materialographic Specimen Preparation, Light Microscopy, Image Analysis and Hardness Testing, USA: ASTM Int., 2006.

  27. Miyamoto, H., Corrosion of Ultrafine Grained Materials by Severe Plastic Deformation: An Overview, Mater. Trans., 2016, vol. 57, no. 5, pp. 559–572. https://doi.org/10.2320/matertrans.M2015452

    Article  Google Scholar 

  28. Gupta, R.K. and Birbilis, N., The Influence of Nanocrystalline Structure and Processing Route on Corrosion of Stainless Steel: A Review, Corrosion Sci., 2015, vol. 92, pp. 1–15. https://doi.org/10.1016/j.corsci.2014.11.041

    Article  Google Scholar 

  29. Balusamy, T., Kumar, S., and Sankara Narayanan, T.S.N., Effect of Surface Nanocrystallization on the Corrosion Behaviour of AISI 409 Stainless Steel, Corrosion Sci., 2010, vol. 52, pp. 3826–3834. https://doi.org/10.1016/j.corsci.2010.07.004

    Article  Google Scholar 

  30. Zheng, Z.J., Gao, Y., Gui, Y., and Zhu, M., Corrosion Behaviour of Nanocrystalline 304 Stainless Steel Prepared by Equal Channel Angular Pressing, Corrosion Sci., 2012, vol. 54, pp. 60–67. https://doi.org/10.1016/j.corsci.2011.08.049

    Article  Google Scholar 

  31. Chen, G., Gao, Y., Wu, S., and Hu, J., Corrosion Behavior of AISI 304 Austenitic Stainless Steel Fabricated by Equal-Channel Angular Pressing, Adv. Mater. Res., 2011, vol. 194–196, pp. 411–415. https://doi.org/10.4028/www.scientific.net/AMR.194-196.411

    Article  Google Scholar 

  32. Schino, A.D. and Kenny, J.M., Effects of the Grain Size on the Corrosion Behavior of Refined AISI 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, vol. 21, pp. 1631–1634. https://doi.org/10.1023/A:1020338103964

    Article  Google Scholar 

  33. Schino, A.D. and Kenny, J.M., Effect of Grain Size on the Corrosion Resistance of a High Nitrogen-Low Nickel Austenitic Stainless Steel, J. Mater. Sci. Lett., 2002, vol. 21, pp. 1969–1971. https://doi.org/10.1023/A:1021625117639

    Article  Google Scholar 

  34. Moura, V., Kina, A.Y., Tavares, S.S.M., Lima, L.D., and Mainier, F.B., Influence of Stabilization Heat Treatments on Microstructure, Hardness and Intergranular Corrosion Resistance of the AISI 321 Stainless Steel, J. Mater. Sci., 2008, vol. 43, pp. 536–540. https://doi.org/10.1007/s10853-007-1785-5

    Article  ADS  Google Scholar 

  35. Jafari, E., Corrosion Behaviors of Two Types of Commercial Stainless Steel after Plastic Deformation, J. Mater. Sci. Technol., 2010, vol. 26(9), pp. 833–838. https://www.jmst.org/EN/Y2010/V26/I9/833

    Article  Google Scholar 

  36. Solomon, N. and Solomon, I., Effect of Deformation-Induced Phase Transformation on AISI 316 Stainless Steel Corrosion Resistance, Eng. Fail. Analys., 2017, vol. 79, pp. 865–875. https://doi.org/10.1016/j.engfailanal.2017.05.031

    Article  Google Scholar 

  37. Kumar, B.R., Mahato, B., and Singh, R., Influence of Cold-Worked Structure on Electrochemical Properties of Austenitic Stainless Steel, Metall. Mater. Trans. A, 2007, vol. 38, pp. 2085–2094. https://doi.org/10.1007/s11661-007-9224-4

    Article  Google Scholar 

  38. Handwerker, C.A., Dynys, J.M., Cannon, R.M., and Coble, R.L., Dihedral Angles in Magnesia and Alumina: Distributions from Surface Thermal Grooves, J. Am. Ceram. Soc., 1990, vol. 73(5), pp. 1371–1377. https://doi.org/10.1111/j.1151-2916.1990.tb05207.x

    Article  Google Scholar 

  39. Saylor, D.M. and Rohrer, G.S., Measuring the Influence of Grain-Boundary Misorientation on Thermal Groove Geometry in Ceramic Polycrystals, J. Am. Ceram. Soc., 1999, vol. 82(6), pp. 1529–1536. https://doi.org/10.1111/j.1151-2916.1999.tb01951.x

    Article  Google Scholar 

  40. McLachlan, G. and Peel, D., Finite Mixture Models, New York: John Wiley & Sons, Inc., 2000.

  41. Dempster, A., Laird, N., and Rubin, D., Maximum Likelihood from Incomplete Data via the EM Algorithm, J. Roy. Statist. Soc. B, 1977, vol. 39(1), pp. 1–38. https://www.jstor.org/stable/2984875

    Google Scholar 

  42. Wilde, G. and Divinski, S., Grain Boundaries and Diffusion Phenomena in Severely Deformed Material, Mater. Trans., 2019, vol. 60(7), pp. 1302–1315. https://doi.org/10.2320/matertrans.MF201934

    Article  Google Scholar 

  43. Vaz, F.M. and Fortes, M.A., Grain Size Distribution: The Lognormal and the Gamma Distribution Functions, Scripta Metall., 1988, vol. 22, pp. 35–40. https://doi.org/10.1016/S0036-9748(88)80302-8

    Article  Google Scholar 

  44. Bock, D., Velleman, P., De Veaux, R., and Bullard, F., Stats: Modeling the World, New York: Pearson, 2019.

  45. Surikova, N.S., Vlasov, I.V., Narkevich, N.A., Gordienko, A.I., and Kuznetsov, P.V., Structure and Deformation Properties of Austenitic Stainless Steel, Phys. Met. Metallogr., 2020, vol. 121, no. 3, pp. 276–283.

    Article  ADS  Google Scholar 

  46. Shena, Y.F., Li, X.X., Sun, X., Wang, Y.D., and Zuo, L., Twinning and Martensite in a 304 Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–522. https://doi.org/10.1016/j.msea.2012.05.080

    Article  Google Scholar 

  47. Gong, N., Wu, H.B., Niu, G., Cao, J.M., and Zhang, D., Effect of Martensitic Transformation on Nano/Ultrafine-Grained Structure in 304 Austenitic Stainless Steel, J. Iron Steel Res. Int., 2017, vol. 24, pp. 1231–1237. https://doi.org/10.1016/S1006-706X(18)30022-0

    Article  Google Scholar 

  48. Huang, X., Morito, S., Hansen, N., and Maki, T., Ultrafine Structure and High Strength in Cold-Rolled Martensite, Metall. Mater. Trans. A, 2012, vol. 43, p. 3517. https://doi.org/10.1007/s11661-012-1275-5

    Article  Google Scholar 

  49. Sharma, N.K. and Shekhar, S., New Insights into the Evolution of Twin Boundaries during Recrystallization and Grain Growth of Low-SFE FCC Alloys, Mater. Charact., 2020, vol. 159, p. 110015. https://doi.org/10.1016/j.matchar.2019.110015

    Article  Google Scholar 

  50. Zimmerman, J., Sharma, A., Divinski, S.V., and Rabkin, E., Relative Grain Boundary Energies in Ultrafine Grain Ni Obtained by High Pressure Torsion, Scripta Mater., 2020, vol. 182, pp. 90–93. https://doi.org/10.1016/j.scriptamat.2020.03.008

    Article  Google Scholar 

  51. Tikhonova, M., Kaibyshev, R., Fang, X., Wang, W., and Belyakov, A., Grain Boundary Assembles Developed in an Austenitic Stainless Steel during Large Strain Warm Working, Mater. Charact., 2012, vol. 70, pp. 14–20. https://doi.org/10.1016/j.matchar.2012.04.018

    Article  Google Scholar 

  52. Ikeda, K., Yamada, K., Takata, N., Yoshida, F., Nakashima, H., and Tsuji, N., Grain Boundary Structure of Ultrafine Grained Pure Copper Fabricated by Accumulative Roll Bonding, Mater. Trans., 2008, vol. 49(1), pp. 24–30. https://doi.org/10.2320/matertrans.ME200715

    Article  Google Scholar 

  53. Morito, S., Saito, H., Ogawa, T., Furuhara, T., and Maki, T., Effect of Austenite Grain Size on Morphology and Crystallography of Lath Martensite in Low Carbon Steels, ISIJ Int., 2005, vol. 45(1), pp. 91–94. https://doi.org/10.2355/isijinternational.45.91

    Article  Google Scholar 

  54. Morito, S., Adachi, Y., and Ohba, T., Morphology and Crystallography of Sub-Blocks in Ultra-Low Carbon Lath Martensite Steel, Mater. Trans., 2009, vol. 50(8), pp. 1919–1923. https://doi.org/10.2320/matertrans.MRA2008409

    Article  Google Scholar 

  55. Morito, S., Tanaka, H., Konishi, R., Furuhara, T., and Maki, T., The Morphology and Crystallography of Lath Martensite in Fe-C Alloys, Acta Mater., 2003, vol. 51, pp. 1789–179. https://doi.org/10.1016/S1359-6454(02)00577-3

    Article  ADS  Google Scholar 

  56. Takaki, S., Fukunaga, K., Syarif, J., and Tsuchiyama, T., Effect of Grain Refinement on Thermal Stability of Metastable Austenitic Steel, Mater. Trans., 2004, vol. 45(7), pp. 2245–2251. https://doi.org/10.2320/matertrans.45.2245

    Article  Google Scholar 

Download references

Funding

The work was carried out under the government statement of work for ISPMS SB RAS (Project FWRW-2021-0009) and the statement of work from the RF Ministry of Science and Higher Education (topic “Function”, No. 122021000035-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kuznetsov.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 2, pp. 57–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, P.V., Stolbovsky, A.V. & Belyaeva, I.V. Quantitative Characterization of Grain Boundaries in Ultrafine-Grained Austenitic Stainless Steel by Cluster Analysis. Phys Mesomech 26, 415–433 (2023). https://doi.org/10.1134/S1029959923040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923040045

Keywords:

Navigation