Skip to main content
Log in

Kinetics of grain growth in the weld heat-affected zone of alloy 718

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Grain-boundary liquation occurs in the weld heat-affected zone (HAZ) of the Ni-base superalloy 718 at locations where the peak temperatures are greater than about 1200 ‡C. The evolution of the grain structure at these HAZ locations depends upon the interaction between the grains and the grain-boundary liquid. The evolution of grain structure in the presence of grain-boundary liquid was simulated by subjecting samples to controlled thermal cycles using resistance heating. A measurement of grain size as a function of isothermal hold at two peak temperatures of 1200 ‡C and 1227 ‡C indicated that in alloy 718, the kinetics of grain growth depended upon the prior thermal history of the alloy. In the solution-treated alloy, the presence of grain-boundary liquid did not arrest grain growth at either peak temperature. In the homogenized and aged alloy, a grain refinement was observed at the peak temperature of 1227 ‡C, while an arrest of grain growth was observed at a peak temperature of 1200‡C. Liquid film migration (LFM) and subgrain coalescence, either acting alone or simultaneously, are shown to explain most of the observed microstructural phenomena and the kinetics of grain growth in the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Pepe and W.F. Savage:Welding Journal, 1967, vol. 46, pp. 411~s-422~s.

    CAS  Google Scholar 

  2. W.A. Owczarski, D.S. Duvall, and C.P. Sullivan:Welding Journal, 1967, vol. 46, pp. 423~s-432~s.

    Google Scholar 

  3. B. Weiss, G.E. Grotke, and R. Stickler:Welding Journal, 1970, vol. 49, pp. 471~s-487~s.

    CAS  Google Scholar 

  4. J.A. Brooks:Welding Journal, 1974, vol. 53, pp. 517~s-523~s.

    Google Scholar 

  5. W.A. Baeslack III, S.J. Savage, and F. Froes:Journal of Materials Science Letters, 1986, pp. 935–39.

  6. A.D. Romig, Jr., J.C. Lippold, and M.J. Cieslak:Metall. Trans. A, 1988, vol. 19A, pp. 35–50.

    Article  CAS  Google Scholar 

  7. J.J. Pepe and W.F. Savage:Welding Journal, 1970, vol. 49, pp. 545~s-553~s.

    Google Scholar 

  8. B. Radhakrishnan and R.G. Thompson:Metall. Trans. A, 1992, vol. 23A, pp. 1783–99.

    Article  CAS  Google Scholar 

  9. I.A. Aksay, C.E. Hoge, and J.A. Pask:J. Phys. Chem., 1974, vol. 78, pp. 1178–83.

    Article  CAS  Google Scholar 

  10. T.P. Isaac, M. Dollar, and T.B. Massalski:Metall. Trans. A, 1988, pp. 675–86.

  11. D. McLean:Grain Boundaries in Metals, Oxford University Press, London, 1957.

  12. E.D. Hondros and M.P. Seah:Intl. Metals Rev., 1977, vol. 22, pp. 262–301.

    CAS  Google Scholar 

  13. J.C. Lippold:Welding Journal, Jan. 1983, vol. 62, pp. ls-lls.

    Google Scholar 

  14. D.N. Yoon:Annu. Rev. Mater. Sci., vol. 19, 1989, pp. 43–58.

    Article  CAS  Google Scholar 

  15. C.A. Handwerker: inDiffusion Phenomena in Thin Films and Microelectronic Materials, D. Gupta and P.S. Ho, eds., Noyes Publications, New Jersey, U.S.A.

  16. M. Hillert:Scripta Metall., 1983, vol. 17, pp. 237–40.

    Article  Google Scholar 

  17. R.G. Thompson and S. Genculu:Welding Journal, Dec. 1983, vol. 62 (12), pp. 337s-345s.

    Google Scholar 

  18. W.A. Baeslack III and D.E. Nelson:Metallography, 1986, vol. 19, pp. 371–79.

    Article  CAS  Google Scholar 

  19. P.J. Valdez and J.B. Steinman:Effect of Minor Elements on the Weldability of High-nickel Alloys, Welding Research Council, New York, 1969, pp. 93–120.

    Google Scholar 

  20. E.G. Thompson:Welding Journal, Feb. 1969, vol. 48 (2), pp. 70s-79s.

    Google Scholar 

  21. T.J. Kelly: Trends in Welding Research, ASM, 1986.

  22. B. Radhakrishnan and R.G. Thompson:Metall. Trans. A, 1991, vol. 22A, pp. 887–902.

    Article  CAS  Google Scholar 

  23. B. Radhakrishnan and R.G. Thompson:Metall. Trans. A, 1993, vol. 24A, pp. 1409–22.

    Article  CAS  Google Scholar 

  24. B. Radhakrishnan and R.G. Thompson:Scripta Metall. 1990, vol. 24, pp. 537–42.

    Article  CAS  Google Scholar 

  25. J.G. Byrne:Recovery, Recrystallization and Grain Growth, Macmillan Co., New York, 1965.

  26. G. Muralidharan: Masters Thesis, University of Alabama at Birmingham, 1988.

  27. D.J. Srolovitz, G.S. Grest, and M.P. Anderson:Acta Metall., 1985, vol. 33, pp. 2233–47.

    Article  CAS  Google Scholar 

  28. N.A. Wilkinson: inSuperalloy 718: Metallurgy and Applications, E.A. Loria, ed., TMS, Warrendale, PA, 1989, pp. 119–33.

    Chapter  Google Scholar 

  29. J.L. Burger, R.R. Biederman, and W.H. Couts: inSuperalloy 718: Metallurgy and Applications, E.A. Loria, ed., TMS, Warrendale, PA, 1989, pp. 207–17.

    Chapter  Google Scholar 

  30. J.C.M. Li:J. Appl. Phys., 1962, vol. 33, p. 2958.

    Article  CAS  Google Scholar 

  31. R.M. German:Liquid Phase Sintering, Plenum Press, New York, 1985, pp. 133–43.

    Book  Google Scholar 

  32. C. Boucher, D. Varela, M. Dadian, and H. Granjon:Revue de Metallurgie, Dec. 1976, pp. 817-31.

  33. T. Muschik, W.A. Kaysser, and T. Hehenkamp:Acta Metall., 1989, vol. 37, pp. 603–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Associate, with the Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radhakrishnan, B., Thompson, R.G. Kinetics of grain growth in the weld heat-affected zone of alloy 718. Metall Trans A 24, 2773–2785 (1993). https://doi.org/10.1007/BF02659501

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659501

Keywords

Navigation