Skip to main content
Log in

Effect of the Thermal History on Macrostructure and Microstructure Development in High-Strength Steel Welds

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work addresses the microstructural and macrostructural development in multipass welded joints. It focuses on multiple thermal cycles induced by successive deposition of welding passes. The local welding-related thermal history was related in detail to the evolution of austenite grains during the manufacturing of two high-strength low alloy steel welds. The analytical Rosenthal thermal model was used to identify the thermal cycles experienced within typical weld metal regions. Selected heat cycles were applied to laboratory specimens, taken from the same weld metal, to investigate microstructural evolution during the welding process. Heat cycle experiments, involving full austenitization, showed the persistence of columnar zones resulting from a memory effect of the prior austenite grains during the reverse transformation. Intercritical heat cycles led to white etching, softer regions with high fractions of retained austenite. They also showed that the memory of austenite grains was actually stored in elongated retained austenite particles that remained after complete welding. This memory effect vanished under high peak temperatures (typically, 130 °C higher than Ac3); this was linked to a competition between growth and merging of elongated, intragranular retained austenite particles, and growth of equiaxed, intergranular austenite particles. Finally, a low peak temperature promoted refined, harder final microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. R. E. Dolby: Eng. Appl. Fract. Anal., 1980, pp. 117–34. https://doi.org/10.1016/B978-0-08-025437-1.50017-6

  2. D.J. Abson and R.J. Pargeter: Int. Met. Rev., 1986, vol. 31(1), pp. 141–96. https://doi.org/10.1179/imtr.1986.31.1.141.

    Article  CAS  Google Scholar 

  3. E. Keehan, L. Karlsson, H.O. Andrén, and L.E. Svensson: Weld. J., 2006, vol. 85(10), pp. 218–24.

    Google Scholar 

  4. E.S. Surian, N.M. Rissone, H.G. Svoboda, and L.A. Vedia: Weld. J., 2010, vol. 89(3), pp. 54–64.

    Google Scholar 

  5. L. Lan, C. Qiu, D. Zhao, X. Gao and L. Du: Mater. Sci. Eng, A, 2011, vol. 529, pp. 192-200. https://doi.org/10.1016/j.msea.2011.09.017

  6. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Metall. Trans. A., 1991, vol. 22(1), pp. 139–49. https://doi.org/10.1007/BF03350956.

    Article  Google Scholar 

  7. S. Moeinifar, A.H. Kokabi, and H.M. Hosseini: Mater. Des., 2010, vol. 31(6), pp. 2948–55. https://doi.org/10.1016/j.matdes.2009.12.023.

    Article  CAS  Google Scholar 

  8. D. Rosenthal: Trans. ASME., 1946, vol. 68, pp. 849–66.

    Google Scholar 

  9. N.N. Rykalin: Calculation of heat processes in welding, U.S.S.R, Moscow, 1960.

    Google Scholar 

  10. H. Arora, R. Singh and G. S. Brar: Meas. Control, 2019, vol. 52 (7-8), pp. 955–69. https://doi.org/10.1177/0020294019857747

  11. M.J. Attarha and I. Sattari-Far: J. Mater. Process. Technol., 2011, vol. 211(4), pp. 688–94. https://doi.org/10.1016/j.jmatprotec.2010.12.003.

    Article  CAS  Google Scholar 

  12. E. Keehan, J. Zachrisson, and L. Karlsson: Sci. Technol. Weld. Join., 2010, vol. 15(3), pp. 233–88. https://doi.org/10.1179/136217110X12665048207692.

    Article  CAS  Google Scholar 

  13. G. Mao, R. Cao, C. Cayron, X. Mao, R. Logé, and J. Chen: Mater. Sci. Eng. A., 2019, vol. 744, pp. 671–81. https://doi.org/10.1016/j.msea.2018.12.035.

    Article  CAS  Google Scholar 

  14. R.W. Fonda and G. Spanos: Metall. Mater. Trans. A., 2000, vol. 31(9), pp. 2145–53. https://doi.org/10.1007/s11661-000-0132-0.

    Article  Google Scholar 

  15. M. Lord and G. Jennings: Svetsaren (Swed. Ed.), 1999, vol. 54 (1-2), pp. 53–58.

  16. M.Q. Johnson, G.M. Evans, and G.R. Edwards: Metals., 1995, vol. 35(10), pp. 1222–31. https://doi.org/10.2355/isijinternational.35.1222.

    Article  CAS  Google Scholar 

  17. B. Dixon and K. Hakansson: Weld. J., 1995, vol. 74(4), pp. 122–32.

    Google Scholar 

  18. X.F. Zhang, P. Han, H. Terasaki, M. Sato, and Y. Komizo: J. Mater. Sci. Technol., 2012, vol. 28(3), pp. 241–48. https://doi.org/10.1016/S1005-0302(12)60048-6.

    Article  Google Scholar 

  19. Y. Kang, G. Park, S. Jeong, and C. Lee: Metall. Mater. Trans. A., 2018, vol. 49(1), pp. 177–86. https://doi.org/10.1007/s11661-017-4384-3.

    Article  CAS  Google Scholar 

  20. R. Mythili, V.T. Paul, S. Saroja, M. Vijayalakshmi, and V.S. Raghunathan: J. Nucl. Mater., 2003, vol. 312(2–3), pp. 199–206. https://doi.org/10.1016/S0022-3115(02)01680-X.

    Article  CAS  Google Scholar 

  21. M. Shome, O.P. Gupta, and O.N. Mohanty: Metall. Mater. Trans. A., 2004, vol. 34(13), pp. 985–96. https://doi.org/10.1007/s11661-004-1002-y.

    Article  Google Scholar 

  22. G. Spanos, R.W. Fonda, R.A. Vandermeer, and A. Matuszeski: Metall. Mater. Trans. A., 1995, vol. 26(12), pp. 3277–93. https://doi.org/10.1007/BF02669455.

    Article  Google Scholar 

  23. E.S. Surian and L.A. De Vedia: Weld. J., 1999, vol. 78, pp. 217–28.

    Google Scholar 

  24. M.M. Amrei, H. Monajati, D. Thibault, Y. Verreman, L. Germain, and P. Bocher: Mater. Charact., 2016, vol. 111, pp. 128–36. https://doi.org/10.1016/j.matchar.2015.11.022.

    Article  CAS  Google Scholar 

  25. W. Liu, F. Lu, Y. Wei, Y. Ding, P. Wang, and X. Tang: Mater. Des., 2016, vol. 108, pp. 195–206. https://doi.org/10.1016/j.matdes.2016.06.102.

    Article  CAS  Google Scholar 

  26. A.J.M. Gomes, J.C.F. Jorge, L.F.G. de Souza, and I.D.S. Bott: Mater. Sci. Forum., 2013, vol. 758, pp. 21–32. https://doi.org/10.4028/www.scientific.net/MSF.758.21.

    Article  CAS  Google Scholar 

  27. A.P. Gerlich, H. Izadi, J. Bundy, and P.F. Mendez: Weld. J., 2014, vol. 93(1), pp. 15–22.

    Google Scholar 

  28. C.F. Jorge, J.L.D. Monteiro, and A.J. Gomes: J. Mater. Res. Technol., 2018, vol. 8(1), pp. 561–71. https://doi.org/10.1016/j.jmrt.2018.05.007.

    Article  CAS  Google Scholar 

  29. Z. Zhang and R.A. Farrar: Weld. J., 1997, vol. 76(5), pp. 183–96.

    Google Scholar 

  30. G. Krauss JR: Acta Metall., 1963, vol. 11 (6), pp. 499–509. https://doi.org/10.1016/0001-6160(63)90085-3

  31. H. Shirazi, G. Miyamoto, S.H. Nedjad, T. Chiba, and M.N. Ahmadabadi: Acta Mater., 2018, vol. 144, pp. 269–80. https://doi.org/10.1016/j.actamat.2017.10.068.

    Article  CAS  Google Scholar 

  32. N. Nakada, T. Tsuchiyam, S. Takaki, and S. Hashizume: ISIJ Int., 2007, vol. 47(10), pp. 1527–32. https://doi.org/10.2355/isijinternational.47.1527.

    Article  CAS  Google Scholar 

  33. L. Liu, Z.G. Yang, C. Zhang, and W.B. Liu: Mater. Sci. Eng. A., 2010, vol. 527(27–28), pp. 7204–09. https://doi.org/10.1016/j.msea.2010.07.083.

    Article  CAS  Google Scholar 

  34. D. Brandl, M. Lukas, M. Stockinger, S. Ploberger, and G. Ressel: Mater. Des., 2019, vol. 176, 107841. https://doi.org/10.1016/j.matdes.2019.107841.

    Article  CAS  Google Scholar 

  35. T. Hara, N. Maruyama, Y. Shinohara, H. Asahi, G. Shigesato, M. Sugiyama, and T. Koseki: ISIJ Int., 2009, vol. 49(11), pp. 1792–800. https://doi.org/10.2355/isijinternational.49.1792.

    Article  CAS  Google Scholar 

  36. A.E. Nehrenberg: J. Met., 1950, vol. 2(1), pp. 162–74. https://doi.org/10.1007/BF03398992.

    Article  Google Scholar 

  37. S. Matsuda and Y. Okamura: Trans. Iron Steel Inst. Jpn., 1974, vol. 14(5), pp. 363–68. https://doi.org/10.2355/isijinternational1966.14.363.

    Article  CAS  Google Scholar 

  38. X. Zhang, G. Miyamoto, T. Kaneshita, Y. Yoshida, Y. Toji, and T. Furuhara: Acta Mater., 2018, vol. 154, pp. 1–13. https://doi.org/10.1016/j.actamat.2018.05.035.

    Article  CAS  Google Scholar 

  39. J. Han and Y.K. Lee: Acta Mater., 2014, vol. 67, pp. 354–61. https://doi.org/10.1016/j.actamat.2013.12.038.

    Article  CAS  Google Scholar 

  40. S. Watanabe and T. Kunitake: Trans. Iron Steel Inst. Jpn., 1976, vol. 16(1), pp. 28–35. https://doi.org/10.2355/isijinternational1966.16.28.

    Article  Google Scholar 

  41. X. Zhang, G. Miyamoto, Y. Toji, and T. Furuhara: Metals., 2019, vol. 9(2), pp. 266–74. https://doi.org/10.3390/met9020266.

    Article  CAS  Google Scholar 

  42. S.T. Kimmins and D.J. Gooch: Met. Sci., 1983, vol. 17(11), pp. 519–32. https://doi.org/10.1179/030634583790420484.

    Article  CAS  Google Scholar 

  43. P. Promoppatum, S.C. Yao, P.C. Pistorius, and A.D. Rollett: Engineering., 2017, vol. 3(5), pp. 685–94. https://doi.org/10.1016/J.ENG.2017.05.023.

    Article  CAS  Google Scholar 

  44. L. M. Dong, X. B. Qiu, T. Y. Liu, Z. Y. Lu, F. Fang and X. J. Hu: J. Mater. Sci. Eng. B, 2017, vol. 7 (11-12), pp. 258–67. https://doi.org/10.17265/2161-6221/2017.11-12.003

  45. E. Keehan, L. Karlsson, H.O. Andrén, and H.K.D.H. Bhadeshia: Sci. Technol. Weld. Join., 2006, vol. 11(1), pp. 9–18. https://doi.org/10.1179/174329306X77849.

    Article  CAS  Google Scholar 

  46. N. Jousset, PhD Thesis, Université PSL, Paris, France, 2022.

  47. S. Zajac, V. Schwinn, and K.H. Tacke: Mater. Sci. Forum., 2005, vol. 500–501, pp. 387–94. https://doi.org/10.4028/www.scientific.net/MSF.500-501.387.

    Article  Google Scholar 

  48. T. Shinozaki, Y. Tomota, T. Fukino, and T. Suzuki: ISIJ Int., 2017, vol. 57, pp. 533–39. https://doi.org/10.2355/isijinternational.ISIJINT-2016-557.

    Article  CAS  Google Scholar 

  49. N. Nakada, R. Fukagawa, T. Tsuchiyama, S. Takaki, D. Ponge, and D. Raabe: ISIJ Int., 2013, vol. 53(7), pp. 1286–88. https://doi.org/10.2355/isijinternational.53.1286.

    Article  CAS  Google Scholar 

  50. P. Song, W. Liu, C. Zhang, L. Liu, and Z. Yang: ISIJ Int., 2016, vol. 56(1), pp. 148–53. https://doi.org/10.2355/isijinternational.ISIJINT-2015-280.

    Article  CAS  Google Scholar 

  51. D.W. Moon, R.W. Fonda, and G. Spanos: Weld. J., 2000, vol. 79(10), pp. 278–85.

    Google Scholar 

  52. S.J. Lee, J.S. Park, and Y.K. Lee: Scr. Mater., 2008, vol. 59(1), pp. 87–90. https://doi.org/10.1016/j.scriptamat.2008.02.036.

    Article  CAS  Google Scholar 

  53. S.J. Lee and Y.K. Lee: Mater. Sci. Forum., 2005, vol. 475, pp. 3169–72. https://doi.org/10.4028/www.scientific.net/MSF.475-479.3169.

    Article  Google Scholar 

  54. S. Yamamoto, H. Yokoyama, K. Yamada, and M. Niikura: ISIJ Int., 1995, vol. 35(8), pp. 1020–26. https://doi.org/10.2355/isijinternational.35.1020.

    Article  CAS  Google Scholar 

  55. L. Lan, Z. Chang, and P. Fan: Metals., 2018, vol. 8(12), pp. 988–100. https://doi.org/10.3390/met8120988.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the French National Association for Research and Technology (ANRT) for financial support under CIFRE Grant No. 2018/1249. The authors warmly thank Gérard Brabant (Centre des Matériaux) for his kind help and assistance with dilatometric tests.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Jousset.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jousset, N., Gaumé, M., Bridier, F. et al. Effect of the Thermal History on Macrostructure and Microstructure Development in High-Strength Steel Welds. Metall Mater Trans A 53, 2561–2576 (2022). https://doi.org/10.1007/s11661-022-06686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06686-2

Navigation