Skip to main content
Log in

The influence of matrix microstructure and particle reinforcement on the creep behavior of 2219 aluminum

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influence of matrix microstructure and reinforcement with 15 vol pct of TiC particles on the creep behavior of 2219 aluminum has been examined in the temperature range of 150 ‡C to 250 ‡C. At 150 ‡C, reinforcement led to an improvement in creep resistance, while at 250 ‡C, both materials exhibited essentially identical creep behavior. Precipitate spacing in the matrix exerted the predominant influence on minimum creep rate in both the unreinforced and the reinforced materials over the temperature range studied. This behavior and the high-stress dependence of minimum creep rate are explained using existing constant structure models where, in the present study, precipitate spacing is identified as the pertinent substructure dimension. A modest microstructure-independent strengthening from particle reinforcement was observed at 150 ‡C and was accurately modeled by existing continuum mechanical models. The absence of reinforcement creep strengthening at 250 ‡C can be attributed to diffusional relaxation processes at the higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Webster:Metall. Trans. A, 1982, vol. 13A, pp. 1511–19.

    Article  Google Scholar 

  2. T.G. Nieh:Metall. Trans. A, 1984, vol. 15A, pp. 139–46.

    Article  CAS  Google Scholar 

  3. M. McLean:Mater. Res. Soc. Proc, 1988, vol. 10, pp. 67–79.

    Article  Google Scholar 

  4. T.G. Nieh, K. Xia, and T.G. Langdon:J. Eng. Mater. Technol., 1988, vol. 110, pp. 77–82.

    Article  CAS  Google Scholar 

  5. K. Xia, T.G. Nieh, J. Wadsworth, and T.G. Langdon:Fundamental Relationships Between Microstructure and Mechanical Properties of Metal-Matrix Composites: The Minerals Metals and Materials Society, TMS, Warrendale, PA, 1990, pp. 543–56.

    Google Scholar 

  6. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan:Scripta Metall., 1990, vol. 24, pp. 1565–70.

    Article  CAS  Google Scholar 

  7. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan:Acta Metall., 1992, vol. 40, pp. 2045–52.

    Article  CAS  Google Scholar 

  8. K.-T. Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall., 1990, vol. 38, pp. 2149–59.

    Article  CAS  Google Scholar 

  9. F.A. Mohamed, K.-T. Park, and E.J. Lavernia:Mater. Sci. Eng. A, 1992, vol. A150, pp. 21–35.

    Article  CAS  Google Scholar 

  10. Y. Ma: University of Southern California, Los Angeles, CA, unpublished research, 1991.

  11. M.S. Zedalis, I.D. Bryant, P.S. Gilman, and S.K. Das:JOM, 1991, vol. 43, pp. 29–31.

    Article  CAS  Google Scholar 

  12. M.Y. Wu and O.D. Sherby:Acta Metall., 1984, vol. 32, pp. 1561–72.

    Article  CAS  Google Scholar 

  13. T.G. Nieh and R. Karlak:Scripta Metall., 1984, vol. 18, pp. 25–28.

    Article  CAS  Google Scholar 

  14. T. Christman and S. Suresh:Acta Metall., 1988, vol. 36, pp. 1691–1704.

    Article  CAS  Google Scholar 

  15. I. Dutta and D.L. Bourell:Mater. Sci. Eng. A, 1989, vol. 112, pp. 67–77.

    Article  Google Scholar 

  16. T. Morimoto, T. Yamaoka, H. Lilholt, and M. Taya:Trans. ASME, 1988, vol. 110, pp. 70–76.

    CAS  Google Scholar 

  17. A.R.C. Westwood:Metall. Trans. B, 1988, vol. 19B, pp. 155–64.

    Article  CAS  Google Scholar 

  18. G.M. Vyletel, P.E. Krajewski, D.C. Van Aken, J.W. Jones, and J.E. Allison:Scripta Metall., 1992, vol. 27, pp. 549–54.

    Article  CAS  Google Scholar 

  19. G.M. Vyletel, J.E. Allison, and D.C. Van Aken:Metall. Trans. A, 1993, vol. 24A, pp. 2545–57.

    Article  CAS  Google Scholar 

  20. C. Calabrese: Ph.D. Dissertation, University of Pennsylvania, Philadelphia, PA, 1972, pp. 34–36.

    Google Scholar 

  21. J.A. Papazian:Metall. Trans. A, 1981, vol. 12A, pp. 269–80.

    Article  Google Scholar 

  22. R.S. Mishra:Scripta Metall., 1992, vol. 26, pp. 309–13.

    Article  CAS  Google Scholar 

  23. R.S. Mishra and A.B. Pandey.Metall. Trans. A, 1990, vol. 21A, pp. 2089–90.

    Article  CAS  Google Scholar 

  24. O.D. Sherby, R.H. Klundt, and A.K. Miller:Metall. Trans. A, 1977, vol. 8A, pp. 843–50.

    Article  CAS  Google Scholar 

  25. S.H. Hong, O.D. Sherby, A.P. Divecha, S.D. Karmarkar, and B.A. MacDonald:J. Compos. Mater., 1988, vol. 22, pp. 102–23.

    Article  CAS  Google Scholar 

  26. N.L. Peterson:J. Nucl. Mater., 1978, vol. 69-70, pp. 3-37. 27. J.E. Bird, A.K. Mukherjee, and J.E. Dorn:Quantitative Relation Between Properties and Microstructure, 1969, p. 255.

  27. G. Bao, J.W. Hutchinson, and R.M. McMeeking:Acta Metall., 1991, vol. 39, pp. 1871–82.

    Article  Google Scholar 

  28. J. Rosier, G. Bao, and A.G. Evans:Acta Metall., 1991, vol. 39, pp. 2733–38.

    Article  Google Scholar 

  29. D.L. Yaney and W.D. Nix:Metall. Trans. A, 1987, vol. 18A, pp. 893–902.

    Article  CAS  Google Scholar 

  30. J. Rosier and E. Arzt:Acta Metall., 1990, vol. 38, pp. 671–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajewski, P.E., Allison, J.E. & Jones, J.W. The influence of matrix microstructure and particle reinforcement on the creep behavior of 2219 aluminum. Metall Trans A 24, 2731–2741 (1993). https://doi.org/10.1007/BF02659497

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659497

Keywords

Navigation