Skip to main content
Log in

High-temperature discontinuously reinforced aluminum

  • Aluminum Composite
  • Research Summary
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Skinner et al., Scripta Met., 20 (1986), p. 867.

    CAS  Google Scholar 

  2. D.J. Skinner, Dispersion Strengthened Aluminum Alloys, ed. Y-W. Kim and W.M. Griffith (Warrendale, PA: TMS, 1988), pp. 181–197.

    Google Scholar 

  3. D.F. Hasson and C.R. Crowe, Strength of Metals and Alloys—ICSMA 7 (Oxford, U.K.: Pergamon Press, 1985), pp. 1515–1520.

    Google Scholar 

  4. S.G. Fishman, Role of Interfaces on Material Damping (Materials Park, OH: ASM, 1985), pp. 33–41.

    Google Scholar 

  5. K. Ohori, H. Watanabe and Y. Takeuchi, Bull. Jpn. Inst. Met., 25 (May 1986), pp. 447–449.

    Google Scholar 

  6. Y. Abe and M. Nakatani, J. Jpn. Inst. Light Met., 36 (6) (1986), pp. 372–380.

    CAS  Google Scholar 

  7. W.R. Mohn, Res. Dev., 29 (7) (1987), pp. 54–58.

    Google Scholar 

  8. E.F. Crawley and M.C. van Schoor, J. Compos. Mater., 21 (June 1987), pp. 553–568.

    Google Scholar 

  9. C.I. Chang, Theor. Appl. Fract. Mech., 8 (1) (1987), pp. 49–57.

    Google Scholar 

  10. M. Taya and R.J. Arsenault, Scripta Met., 21 (3) (1987), pp. 349–354.

    CAS  Google Scholar 

  11. P.K. Liaw, H.G. Greggi and W.A. Logsdon, J. Mater. Sci. Lett., 22 (5) (1987), pp. 1613–1617.

    CAS  Google Scholar 

  12. J.F. Mandell, K.C.C. Hong and D.H. Grande, Ceram. Eng. Sci. Proc., 8 (7–8) (1987), pp. 937–940.

    Google Scholar 

  13. K.I. Ohuchi, H. Morimoto and T. Minamide, Kobe Res. Dev., 37 (3) (1987), pp. 31–33.

    CAS  Google Scholar 

  14. B. Roebuck, J. Mater. Sci. Lett., 6 (October 1987), pp. 1138–1140.

    CAS  Google Scholar 

  15. R.L. Trumper, Met. Mater., 3 (11) (1987), pp. 662–667.

    CAS  Google Scholar 

  16. J. Harding et al., Sixth Int. Conf. On Comp. Mater. and Sec. Eur. Conf. on Comp. Mat., vol. 2 (Barking, U.K.: Elsevier Appl. Sci. Pub. Ltd., 1987), pp. 2.224–2.233.

    Google Scholar 

  17. H. Lilholt and M. Taya, Sixth Int. Conf. On Comp. Mater. and Sec. Eur. Conf. on Comp. Mat., vol. 2 (Barking, U.K.: Elsevier Appl. Sci. Pub. Ltd., 1987), pp. 2.234–2.244.

    Google Scholar 

  18. Y. Fupta, H. Fukumoto and Y. Kurita, Sixth Int. Conf. On Comp. Mater. and Sec. Eur. Conf. on Comp. Mat., vol. 2 (Barking, U.K.: Elsevier Appl. Sci. Pub. Ltd., 1987), pp. 2.3402.349.

    Google Scholar 

  19. H.J. Rack, Sixth Int. Conf. On Comp. Mater. and Sec. Eur. Conf. on Comp. Mat., vol. 2 (Barking, U.K.: Elsevier Appl. Sci. Pub. Ltd., 1987), pp. 2.382–2.389.

    Google Scholar 

  20. J. Dinwoodie and I. Harsfall, Sixth Int. Conf. On Comp. Mater. and Sec. Eur. Conf. on Comp. Mat., vol. 2 (Barking, U.K.: Elsevier Appl. Sci. Pub. Ltd., 1987), pp. 2.224–2.233.

    Google Scholar 

  21. D.H. Grande, J.F. Mandell and K.C.C. Hong, J. Mat. Sci., 23 (January 1988), pp. 311–328.

    CAS  Google Scholar 

  22. B. Roebuck, T.A.E. Corley and L.N. McCartney, Nat’l. Phys. Lab. Rep., DMA A, 153 (1988), p. 49.

    Google Scholar 

  23. T. Christman and S. Suresh, Mat. Sci. Eng., 102A (2) (1988), pp. 211–216.

    Google Scholar 

  24. A.A. Zabolotskii, Kompoz. Mater., 3 (1988), p. 107.

    Google Scholar 

  25. P. Niskanen and W.R. Mohn, Adv. Mater. Proc., 133 (3) (1988), pp. 39–41.

    Google Scholar 

  26. G. Mott and P.K. Liaw, Met. Trans., 19A (1988), p. 2233.

    CAS  Google Scholar 

  27. M.N. Gungor, P.K. Liaw and M.G. Burke, Proc. Int’l. Symp. on Ado. in Cast Reinforce Metal Composites (Materials Park, OH: ASM, 1988), p. 211.

    Google Scholar 

  28. W.R. East, Mat. Engr. (March 1988), pp. 33–36.

    Google Scholar 

  29. R. DeMeis, Aerospace America (March 1989), pp. 26–28.

    Google Scholar 

  30. M.S. Zedalis, J.M. Peltier and P.S. Gilman, Light-Weight Alloys for Aerospace Applications, ed. E.W. Lee, E.H. Chia and N.J. Kim (Warrendale, PA: TMS, 1989), pp. 323–334.

    Google Scholar 

  31. M.S. Zedalis and D.J. Skinner, Light-Weight Alloys for Aerospace Applications, ed. E.W. Lee, E.H. Chia and N.J. Kim (Warrendale, PA: TMS, 1989), pp. 335–344.

    Google Scholar 

  32. M.S. Zedalis, P.S. Gilman and S.K. Das, “High Temperature Aluminum-Base Composites,” High Performance Composites for the 1990’s (Warrendale, PA: TMS, 1991), pp. 61–83.

    Google Scholar 

  33. “Materials Selector 1990,” Mat. Eng. (December 1989).

  34. “Engineering Property Data on Selected Ceramics,” MCIC Report HB-07, vol. 2, (Columbus, OH: Battelle, August 1979).

  35. Metals Handbook, Properties and Selection, 9th ed., vol. 3 (Materials Park, OH: ASM, 1980), p. 388.

  36. Metals Handbook, Properties and Selection, 9th ed., vol. 3 (Materials Park, OH: ASM, 1980), p. 34.

  37. A. Reuss, Z. Angew. Math. Mech., 9 (1929), p. 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zedalis, M.S., Bryant, J.D., Gilman, P.S. et al. High-temperature discontinuously reinforced aluminum. JOM 43, 29–31 (1991). https://doi.org/10.1007/BF03221100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03221100

Keywords

Navigation