Skip to main content
Log in

Assessing and understanding U.S. and Chinese students' mathematical thinking

Some insights from cross-national studies

  • Analyses
  • Published:
Zentralblatt für Didaktik der Mathematik Aims and scope Submit manuscript

Abstract

If the main goal of educational research and refinement of instructional program is to improve students' learning, it is necessary to assess students' emerging understandings and to see how they arise. The purpose of this paper is to address issues related to assessments of students' mathematical thinking in cross-national studies and then to discuss the lessons we may learn from these studies to assess and improve students' learning. In particular, the issues related to assessing U.S. and Chinese students' mathematical thinking were discussed. Then, this paper discussed the findings from two studies examining the impact of early algebra learning and teachers' beliefs on U.S. and Chinese students' mathematical thinking. Lastly, the issues related to interpreting and understanding the differences between U.S. and Chinese students' thinking were discussed.

Kurzreferat

Wenn Sinn und Zweck von Unterrichtsforschung und-veränderung eine Verbesserung des Lernen von Schülerinnen und Schülern ist, dann ist es notwendig zu untersuchen, wie Verständnis entsteht und wie es sich entwickelt. Ziel dieser Arbeit ist, Fragen im Zusammenhang mit der Erhebung mathematischen Denkens in internationalen Studien anzusprechen und zu diskutieren, wie diese Erkenntnisse zur Beurteilung und Verbesserung des Lernens beitragen können. Insbesondere werden diese Aspekte anhand der Untersuchung des mathematischen Denkens von nordamerikanischen und chinesischen Schülerinnen und Schüler diskutiert. Der Beitrag betrachtet die Ergebnisse zweier Studien über den Einfluss früher Algebra-Lemerfahrungen und der Einstellung von Lehrpersonen auf das mathematische Denken nordamerikanischer und chinesischer Kinder Abschließend werden Fragen der Interpretation und des Verständnisses der Unterschiede im Denken nordamerikanischer und chinesischen Schülerinnen und Schüler erörtert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baroody, A. J. (1990): How and when should place-value concepts and skills be taught?—In: Journal for Research in Mathematics Education, Vol. 21, p. 281–286.

  • Becker, J. P.; Sawada, T.; Shimizu, Y. (1999): Some findings of the U.S.-Japan cross-cultural research on students' problem-solving behaviors.— In G. Kaiser, E. Luna, & I Huntley (Eds.), International comparisons in mathematics education. Falmer Press, p. 121–139.

  • Bruner, J. S. (1996): The culture of education.—Cambridge, MA; Harvard University Press.

    Google Scholar 

  • Cai, J. (1995): A cognitive analysis of U.S. and Chinese students' mathematical performance on tasks involving computation, simple problem solving, and complex problem solving.—(Journal for Research in Mathematics Education monograph series 7), Reston, VA: National Council of Teachers of Mathematics

    Google Scholar 

  • Cai, J. (1998): An investigation of U.S. and Chinese students' mathematical problem posing and problem solving.—In: Mathematics Education Research Journal, Vol. 10, p. 37–50.

  • Cai, J. (2000a): Mathematical thinking involved in U.S. and Chinese students' solving process-constrained and process-open problems.—In: Mathematical Thinking and Learning: An International Journal, Vol. 2, pp. 309–340.

  • Cai, J. (2000b, April): The development of U.S. and Chinese students' mathematical thinking in problem solving: Influence of the learning opportunity of algebraic concepts. Paper presented at the annual meeting of the American Educational Research Association; New Orleans, LA, April 24–28, 2000.

  • Cai, J. (2001): Improving mathematics learning: Lessons from cross-national studies of U.S. and Chinese students. Phi Delta Kappan, Vol. 82, p. 400–405.

    Google Scholar 

  • Cai, J. (2002). Impact of teachers' conceptions of pedagogical representations on U.S. and Chinese students' thinking.—In F. Lopez-Real et al. (Eds.), Proceedings of the International Congress of Mathematics Instruction (ICMI) Comparative Study Conference. The University of Hong Kong, Hong Kong, China, p. 115–124.

    Google Scholar 

  • Cai, J., Hwang, S. (in press): U.S. and Chinese students' generalized and generative thinking in mathematical problem solving and problem posing. Journal of Mathematical Behavior.

  • Carpenter, T. P., Fennema, E., Peterson, P. L.; Chiang, C.; Loef, M. (1989): Using knowledge of children's mathematical thinking in classroom teaching: An experimental study—In American Educational Research Journal, Vol. 26, p. 499–531.

  • Darling-Hammond, L. (1994): Performance-based assessment and educational equity.—In: Harvard Education Review, Vol. 64, p. 5–30.

  • Dreyfus, T.; Eisenberg, T. (1996): On different facets of mathematical thinking.—In R. J. Sternberg, T. Ben-Zeev (Eds.) The nature of mathematical thinking, Hillsdale, NJ: Erlbaum, p. 253–284.

    Google Scholar 

  • English, L. D. (1997): The development of fifth-grade children's problem-posing abilities. Educational Studies in Mathematics, Vol. 34, pp. 183–217.

    Article  Google Scholar 

  • Ginsburg, H. P. (Ed.) (1983). The development of mathematical thinking.—New York: Academic Press.

    Google Scholar 

  • Harmon, M.; Smith, T. A.; Martin, M. O. et al. (1997): Performance assessment in IEA's Third International Mathematics and Science Study (TIMSS).—MA, Boston College: TIMSS, International Study Center.

    Google Scholar 

  • Hatano, G. (1988): Social and motivational bases for mathematical understanding.—In: G. B. Saxe & M. Gearhart (Eds.), Children's mathematics. San Francisco, CA: Jossey Bass, p. 55–70.

    Google Scholar 

  • Hiebert, J. (Eds.) (1986): Conceptual and procedural knowledge: The case of mathematics.—Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Hiebert, J.; Wearne, D.; Taber, S. (1991): Fourth graders' gradual construction of decimal fractions during instruction using different physical representations—In: Elementary School Journal, Vol. 91, p. 321–341.

  • Janvier, C. (1987), Problems of representation in the teaching and learning of mathematical problem solving.—Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kaiser, G.; Luna, E.; Huntley, I. (Eds.) (1999): International comparisons in mathematics education—Falmer Press

  • Kilpatrick, J. (1987). Problem formulating: Where do good problems come from?—In: A. H. Schoenfeld (Ed.), Cognitive science and mathematics education, Hillsdale, NJ: Erlbaum. p. 123–147.

    Google Scholar 

  • Krutetskii, V. A. (1976): The psychology of mathematical abilities in schoolchildren.—Chicago: University of Chicago Press

    Google Scholar 

  • Ma, L. (1999): Knowing and teaching elementary mathematics Teachers' understanding of fundamental mathematics in China and the United States.—Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Marton, F.; Ramsden, P. (1988): What does it take to improve learning?—In: P. Ramsden (ed.), Improving learning: New perspectives, London: Kogan Page, p. 268–286.

    Google Scholar 

  • Mayer, R. E. (1987): Educational psychology: A cognitive approach.—Boston: Little, Brown.

    Google Scholar 

  • Mislevy, R. J. (1995): What can we learn from international assessments?.—In: Educational Evaluation and Policy Analysis, Vol. 17, p. 419–437.

  • National Council of Teachers of Mathematics (2000): Principles and standards for school mathematics.—Reston, VA, The Author.

    Google Scholar 

  • Presmeg, N. C. (1997). Generalization using imagery.—In: L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors and images. Mahwah, NJ: Erlbaum, p. 299–312.

    Google Scholar 

  • Robitaille, D. F.; Garden, R. A. (Eds.) (1989): The IEA study of mathematics II: Contexts and outcomes of school mathematics.—New York: Pergamon Press

    Google Scholar 

  • Rogoff, B.; Chavajay, P (1995): What's become of research on the cultural basis of cognitive development?—In: American Psychologist, Vol., p. 859–877.

  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics.—In: D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan, p. 334–370.

    Google Scholar 

  • Schoenfeld, A. H. (Ed.) (1997): Mathematical thinking and problem solving. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Silver, E. A. (1994): On mathematical problem posing.—In: For the Learning of Mathematics, Vol. 14, p. 19–28.

  • Silver, E. A.; Kenney, P. A. (Eds.) (2001): Results from the seventh mathematics assessment of the National Assessment of Educational Progress.—Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Silver, E. A.; Lane, S. (1992): Assessment in the context of mathematics instruction reform: The design of assessment in the QUASAR project.—In: M. Niss (Ed.), Assessment in mathematics education and its effects. London: Kluwer Academic Publishers, p. 59–70.

    Google Scholar 

  • Silver, E. A.; Leung, S. S.; Cai, J. (1995): Generating multiple solutions for a problems: A comparison of the responses of U.S. and Japanese students.—In: Educational Studies in Mathematics, Vol. 28, p. 35–54.

  • Simon, H. A. (1989): Models of Thought (Vol. II).—New Haven: Yale University Press.

    Google Scholar 

  • Steen, L. A. (1999): Twenty questions about mathematical reasoning.—In: L. V. Stiff & F. R. Curcio, (Eds.), Developing mathematical reasoning in grades K-12. Reston, VA: National Council of Teachers of Mathematics, p. 270–285.

    Google Scholar 

  • Sternberg, R. J. (1991): Cognitive theory and psychometrics.— In: R. K. Hambleton & J. N. Zaal (Eds.), Advances in educational and psychological testing: Theory and applications. Boston: Kluwer Academic Publishers, p. 367–393.

    Google Scholar 

  • Sternberg, R. J. (1999): The nature of mathematical reasoning. —In: L. V. Stiff & F. R. Curcio, (Eds.), Developing mathematical reasoning in grades K-12. Reston, VA: National Council of Teachers of Mathematics p. 37–44.

    Google Scholar 

  • Sternberg, R. J., Ben-Zeev, T. (Eds.) (1996): The nature of mathematical thinking.—Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Stevenson, H. W.: Lee, S.; Chen, C., et al. (1990): Mathematics achievement of children in China and the United States.—In: Child Development, Vol. 61, p 1053–1066.

  • Stigler, J. W.; Hiebert, J. (1999): The Teaching gap: Best ideas from the world's teachers for improving education in the classroom.—New York: The Free Press.

    Google Scholar 

  • Thompson, P. W. (1992): Notations, conventions, and constraints: Contributions to effective uses of concrete materials in elementary mathematics.—In: Journal for Research in Mathematics Education, Vol. 23, p. 123–147.

  • Thompson, P. W. (1994): Concrete materials and teaching for mathematical understanding—In: Arithmetic Teacher, Vol. 41, p. 556–558.

  • Westbury, I. (1992): Comparing American and Japanese achievement: Is the United States really a low achiever?—In Educational Researcher, Vol. 21, 18–24.

  • U.S. Department of Education, National Center for Education Statistics (1996): Pursuing excellence: A study of U.S. eighth-grade mathematics and science achievement in international context, NCES 97-198. Washington DC: U.S. Government Printing Office.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J. Assessing and understanding U.S. and Chinese students' mathematical thinking. Zentralblatt für Didaktik der Mathematik 34, 278–290 (2002). https://doi.org/10.1007/BF02655726

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655726

ZDM-Classification

Navigation