Skip to main content
Log in

Highly transparent conductive films of thermally evaporated In2O3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Highly transparent (over 90% transmission in the visible range) and highly conductive (resistivity ≈2 × 10-4 ohm-cm) indium oxide (undoped) films have been produced by thermal evaporation from In2O3 + In source in a vacuum chamber con-taining low pressures of O2, . Film properties are comparable or superior to the best tin-doped indium oxide films that have ever been reported, and excellent reproducibility has been achieved. Hall effect measurements have revealed that the observed low resistivity is primarily a result of the excellent electron mobility (≏ 70 cm2/V-sec), although the electron concentration is also rather high (≥4 × l020/cm3). X-ray diffraction measurements show distinctly polycrystal-line In2O3 structure with a lattice constant ranging from 10.07Å to 10.11Å. Electrolytic electroreflectance spectra exhibit at least four critical transitions, from which we have determined the direct and indirect optical band gaps (3.56eV and 2.69eV, respectively). Burstein shifts due to the population of electrons in the condition band are also observed. From an internal photoemission study, the work function of the In2O3 film has been determined to be 5.0eV. These and other results, along with a discussion of the processing details are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.L. Weiher and R.P. Ley, J. Appl. Phys.37, 299 (1966)

    Article  CAS  Google Scholar 

  2. H.K. Muller, Phys. Stat. Sol.27, 723 (1968).

    Article  Google Scholar 

  3. D.B. Fraser and H.D. Cook, J. Electrochem. Soc.119 1368 (1972).

    Article  CAS  Google Scholar 

  4. W.W. Molzen, J. Vac. Sci. Technol.12, 99 (1975).

    Article  CAS  Google Scholar 

  5. J.C.C. Fan, F.J. Bachner, and G.H. Foley, Appl. Phys. Lett.31, 773 (1977).

    Article  CAS  Google Scholar 

  6. W.G. Haines and R.H. Bube, J. Appl. Phys.49, 304 (1978).

    Article  CAS  Google Scholar 

  7. R. Groth, Phys. Stat. Sol.14, 69 (1966).

    Article  CAS  Google Scholar 

  8. R. Clanget, Appl. Phys.2, 247 (1973).

    Article  Google Scholar 

  9. H. Kostlin, R. Jost, and W. Lems, Phys. Stat. Sol.29 87 (1975).

    Article  Google Scholar 

  10. M. Cardona,Modulation Spectroscopy, Academic Press, New York, 1969.

    Google Scholar 

  11. D.E. Aspnes, Surface Science,37, 418 (1973).

    Article  CAS  Google Scholar 

  12. R. Williams, Phys. Rev.117, 1487 (1960).

    Article  CAS  Google Scholar 

  13. K.L. Shaklee, F.H. Pollak, and M. Cardona, Phys. Rev. Letts.,15, 883 (1965).

    Article  CAS  Google Scholar 

  14. G. Rupprecht, Z. Physik.139, 504 (1954).

    Article  CAS  Google Scholar 

  15. V.M. Vainshtein and V.l. Fistul, Soviet Phy.-Semicond.,1 104 (1967).

    Google Scholar 

  16. E. Burstein, Phys. Rev.93, 632 (1954).

    Article  CAS  Google Scholar 

  17. L.K. Frevel, J. Appl. Phys.13, 109 (1942).

    Article  CAS  Google Scholar 

  18. R.W.G. Wyckoff,Crystal Structures, Vol. 2, 2nd Ed., p.5, Interscience Publisher, NY (1964).

    Google Scholar 

  19. R. Williams, Phys. Rev.,140, A569 (1965).

    Article  Google Scholar 

  20. A.M. Goodman and J.J. O'Neill, Jr., J. Appl. Phys.37_, 3580 (1966).

    Article  CAS  Google Scholar 

  21. B.E. Deal, E.H. Snow, and C.A. Mead, J. Phys. Chem. Solids,27, 1873 (1966).

    Article  CAS  Google Scholar 

  22. A.M. Goodman, Phys. Rev.144, 588 (1966).

    Article  CAS  Google Scholar 

  23. J.C. Reviere, Proc. Phys. Soc. Lond.B70, 676 (1957).

    Google Scholar 

  24. S.W. Lai, L. Franz, G. Grant, R.L. Anderson, J.K. Clif- ton and J.V. Masi, in s'11th IEEE Photovoltaic Spec. Conf.,s' p.398, IEEE, Scottsdale, 12 Aug. (1975).

  25. E.Y. Wang and L. Hsu, J. Electrochem. Soc.125, 1328 (1978).

    Article  CAS  Google Scholar 

  26. R. Singh, J. Shewchun, Appl. Phys. Lett.,33. 601 (1978).

    Article  Google Scholar 

  27. R. Singh, J. Electrochem. Soc.126, 1081 (1979).

    Article  Google Scholar 

  28. R. Singh, K. Rajkanan, D. Brodie, and J. Morgan, IEEE Trans. Electron Dev.ED-27, 656 (1980).

    CAS  Google Scholar 

  29. J. Shewchun, D. Burk, and M.B. Spitzer, IEEE Trans. Electron Dev.ED-27, 705 (1980).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, C.A., Ma, T.P. Highly transparent conductive films of thermally evaporated In2O3 . J. Electron. Mater. 10, 43–57 (1981). https://doi.org/10.1007/BF02654901

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654901

Keywords

Navigation