Skip to main content
Log in

Studies of the orientations of fracture surfaces produced in austenitic stainless steels by stress-corrosion cracking and hydrogen embrittlement

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Orientation studies have been made on several different austenitic stainless steels, using photogrammetric and electron channeling techniques. The fracture facets produced by SCC in boiling aqueous MgCl2 (155 °C) were large and relatively flat in the case of type 310 steels, and the fracture plane was found to be at or near {100}. The transgranular stress-corrosion fractures in type 304 steels were more complex, and there was considerably more scatter in the orientation determinations. However, the orientations of the fracture facets in these steels were clearly not {100}, but fell into two distributions, one near {211} and the other near {110}. Electron diffraction studies from the fracture surfaces indicated the presence of α′ and martensites in the type 304 but not in the type 310 cases; the possibility that this was responsible for the differences in fracture planes is discussed. Studies were also made of a type 304 specimen which had failed by SCC at 289 °C. No martensitic phases were detected at the fracture surfaces in this case, and the fracture facets were large and flat, similar to those for type 310. Cleavage-like fracture surfaces were also produced in type 304 steels by hydrogen embrittlement, using both gaseous hydrogen and cathodic charging, but the facets were too small for precise orientation determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Reed and H. W. Paxton:First International Congress on Metallic Corrosion, p. 301, Butterworths, London, 1962.

    Google Scholar 

  2. M. Marek and R. F. Hochman:Corrosion, 1971, vol. 27, p. 361.

    CAS  Google Scholar 

  3. M. Ahlers and E. Riecke:Corros. Sci., 1978, vol. 18, p. 21.

    Article  CAS  Google Scholar 

  4. E. E. Denhard:Physical Metallurgy of Stress Corrosion Fracture, p. 223, Interscience, New York, 1959.

    Google Scholar 

  5. T. J. Smith and R. W. Staehle:Corrosion, 1967, vol. 23, p. 117.

    CAS  Google Scholar 

  6. D. Tromans and J. Nutting:Corrosion, 1965, vol. 21, p. 143.

    CAS  Google Scholar 

  7. M. Louthan:Corrosion, 1965, vol. 21, p. 288.

    CAS  Google Scholar 

  8. J. D. Harston and J. C. Scully:Corrosion, 1970, vol. 26, p. 387.

    CAS  Google Scholar 

  9. R. J. Asaro, A. J. West, and W. A. Tiller:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, p. 1115, NACE, Houston, 1977.

    Google Scholar 

  10. J. L. Nelson and J. A. Beavers:Met. Trans. A, 1979, vol. 10A, p. 658.

    CAS  Google Scholar 

  11. D. Eliezer, D. G. Chakrapani, C. J. Altstetter, and E. N. Pugh:Met. Trans. A, 1979, vol. 10A, p. 935.

    CAS  Google Scholar 

  12. H. Okada, Y. Hosoi, and S. Abe:Corrosion, 1971, vol. 27, p. 424.

    CAS  Google Scholar 

  13. P. Berge, W. E. Berry, R. N. Blazer, W. F. Brindley, J. A. Brothers, H. P. Matler, J. W. McGraw, W. L. Pearl, R. B. Puyear, W. F. Ruther, and D. Van Rooyen:Mater. Prot., 1967, p. 69.

  14. S. S. Birley and D. Tromans:Corrosion, 1971, vol. 27, p. 63.

    CAS  Google Scholar 

  15. A. J. Bursle, K. R. L. Thompson, and L. H. Keys:Proc. Sixth Int. Congr. on Metallic Corrosion, Sydney, 1975.

  16. D. Eliezer, D. G. Chakrapani, C. J. Altstetter, and E. N. Pugh:Proc. Second Int. Congr. on Hydrogen in Metals, p. 3F5, Pergamon, New York, 1977.

    Google Scholar 

  17. A. J. Bursle and E. N. Pugh:Environment Sensitive Fracture of Engineering Materials, p. 18, TMS-AIME, Warrendale, PA, 1979.

    Google Scholar 

  18. R. M. Vennett and G. S. Ansell:Trans. ASM, 1967, vol. 60, p. 242.

    CAS  Google Scholar 

  19. R. B. Benson, R. K. Dann, and L. W. Roberts:Trans. TMS-AIME, 1968, vol. 242, p. 2199.

    CAS  Google Scholar 

  20. M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl:Mater. Sci. Eng., 1972, vol. 10, p. 357.

    Article  CAS  Google Scholar 

  21. D. A. Vaughan, D. I. Phalen, C. L. Peterson, and W. K. Boyd:Corrosion, 1963, vol. 19, p. 315t.

    Google Scholar 

  22. M. L. Holzworth and M. R. Louthan:Corrosion, 1968, vol. 24, p. 110.

    CAS  Google Scholar 

  23. M. Smialowski:Fundamental Aspects of Stress-Corrosion Cracking, p. 462, NACE, Houston, 1969.

    Google Scholar 

  24. H. Okada, Y. Hosoi, and S. Abe:Corrosion, 1970, vol. 26, p. 183.

    CAS  Google Scholar 

  25. H. Hanninen and T. Hakkarainen:Corrosion, 1980, vol. 36, p. 47.

    CAS  Google Scholar 

  26. H. M. Otte:Acta Metall., 1957, vol. 5, p. 614.

    Article  CAS  Google Scholar 

  27. J. A. Venables:Philos. Mag., 1962, vol. 7, p. 35.

    Google Scholar 

  28. R. P. Reed:Acta Metall, 1962, vol. 10, p. 865.

    Article  CAS  Google Scholar 

  29. J. B. Breedis and W. D. Robertson:ibid, p. 1077.

    Article  CAS  Google Scholar 

  30. J. Dash and H. M. Otte:Acta Metall., 1963, vol. 11, p. 1169.

    Article  CAS  Google Scholar 

  31. J. F. Breedis:Trans. TMS-AIME, 1964, vol. 230, p. 1583.

    CAS  Google Scholar 

  32. R. Lagneborg:Acta Metall., 1964, vol. 12, p. 823.

    Article  CAS  Google Scholar 

  33. J. F. Breedis:Acta Metall., 1965, vol. 13, p. 239.

    Article  CAS  Google Scholar 

  34. P. L. Mangonon and G. Thomas:Met. Trans., 1970, vol. 1, p. 1577.

    Article  CAS  Google Scholar 

  35. J. F. Breedis and L. Kaufman:Met. Trans., 1971, vol. 2, p. 2359.

    Article  CAS  Google Scholar 

  36. Y. Higo, F. Lecroisey, and T. Mori:Acta Metall., 1974, vol. 22, p. 313.

    Article  CAS  Google Scholar 

  37. H. Hanninen and T. Hakkarainen:Met. Trans. A, 1979, vol. 10A, p. 1196.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Metallurgy, University of Illinois at Urbana-Champaign.

Formerly with the Department of Metallurgy, University of Illinois at Urbana-Champaign.

Formerly Professor of Metallurgy, University of Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Narita, N., Altstetter, C. et al. Studies of the orientations of fracture surfaces produced in austenitic stainless steels by stress-corrosion cracking and hydrogen embrittlement. Metall Trans A 11, 1563–1574 (1980). https://doi.org/10.1007/BF02654520

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02654520

Keywords

Navigation