Skip to main content
Log in

Fracture surface topography analysis of the hydrogen-related fracture propagation process in martensitic steel

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The hydrogen-related fracture propagation process in martensitic steel was investigated through crystallographic orientation and fracture surface topography analyses. The hydrogen-related fracture surface consisted of three typical surfaces, namely smooth surfaces, surfaces with serrated markings, and surfaces with dimples. Crystallographic orientation analysis suggested that the smooth surface was generated by intergranular fracture at prior austenite grain boundaries, and the surface with serrated markings originated from quasi-cleavage fracture propagated along \(\{011\}\) planes. According to the reconstructed fracture propagation process by fracture surface topography analysis, the intergranular fracture at prior austenite grain boundaries initiated and propagated suddenly at the early stages of fracture. The quasi-cleavage fracture along \(\{011\}\) planes then gradually propagated within the prior austenite grains. At the final stages of fracture, ductile fracture accompanied by dimples occurred around the edge of the specimen. The results clearly indicated that the fracture propagation path changed with the proceeding fracture from the prior austenite grain boundaries to along \(\{011\}\) planes within the prior austenite grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Banerji SK, McMahon CJ Jr, Feng HC (1978) Intergranular fracture in 4340-Type steels: effects of impurities and hydrogen. Metall Mater Trans A 9(2):237–247. doi:10.1007/BF0264670

    Article  Google Scholar 

  • Cao Y, Nie W, Yu J, Tanaka K (2014) A novel method for failure analysis based on three-dimensional analysis of fracture surfaces. Eng Fail Anal 44:74–84. doi:10.1016/j.engfailanal.2014.04.032

    Article  Google Scholar 

  • Cao Y, Zhang S, Tanaka K (2013) Calculation method for maximum low-cycle fatigue loads using FRASTA reconstruction data. Int J Fract 182(2):157–166. doi:10.1007/s10704-013-9862-z

    Article  Google Scholar 

  • Craig B, Krauss G (1980) The structure of tempered martensite and its susceptibility to hydrogen stress cracking. Metall Mater Trans A 11(11):1799–1808. doi:10.1007/BF02655095

    Article  Google Scholar 

  • Dadfarnia M, Nagao A, Wang S, Martin ML, Somerday BP, Sofronis P (2015) Recent advances on hydrogen embrittlement of structural materials. Int J Fract 196(1–2):223–243. doi:10.1007/s10704-015-0068-4

    Article  Google Scholar 

  • Geng WT, Freeman AJ, Olson GB, Tateyama Y, Ohno T (2005) Hydrogen-promoted grain boundary embrittlement and vacancy activity in metals: insights from Ab initio total energy calculatons. Mater Trans 46(4):756–760. doi:10.2320/matertrans.46.756

    Article  Google Scholar 

  • Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201):1153–1158. doi:10.1126/science.1254581

    Article  Google Scholar 

  • Kim YH, Kim HJ, Morris JW Jr (1986) The influence of precipitated austenite on hydrogen embrittlement in 5.5Ni steel. Metall Mater Trans 17(7):1157–1164. doi:10.1007/BF02665314

    Article  Google Scholar 

  • Kim YH, Morris JW Jr (1983) The nature of quasicleavage fracture in tempered 5.5Ni steel after hydrogen charging. Metall Mater Trans A 14(9):1883–1888. doi:10.1007/BF02645559

    Article  Google Scholar 

  • Kirchheim R, Somerday B, Sofronis P (2015) Chemomechanical effects on the separation of interfaces occurring during fracture with emphasis on the hydrogen-iron and hydrogen-nickel system. Acta Mater 99(11):87–98. doi:10.1016/j.actamat.2015.07.057

    Article  Google Scholar 

  • Kobayashi T, Shockey DA (1987) A fractographic investigation of thermal embrittlement in cast duplex stainless steel. Metall Mater Trans A 18(11):1941–1949. doi:10.1007/BF02647024

    Article  Google Scholar 

  • Kobayashi T, Shockey DA (2010) Fracture surface topography analysis (FRASTA)—development, accomplishments, and future applications. Eng Fract Mech 77(12):2370–2384. doi:10.1016/j.engfracmech.2010.05.016

    Article  Google Scholar 

  • Luppo MI, Ovejero-Garcia J (1991) The influence of microstructure on the trapping and diffusion of hydrogen in a low carbon steel. Corros Sci 32(10):1125–1136. doi:10.1016/0010-938X(91)90097

    Article  Google Scholar 

  • Lynch SP (1984) A fractographic study on gaseous hydrogen embrittlement and liquid-metal embrittlement in a tempered-martensitic steel. Acta Metall 32(1):79–80. doi:10.1016/0001-6160(84)90204-9

    Article  Google Scholar 

  • Lynch S (2012) Hydrogen embrittlement phenomena and mechanisms. Corros Rev 30(3–4):105–123. doi:10.1515/corrrev-2012-0502

    Google Scholar 

  • Martin ML, Fenske JA, Liu GS, Sofronis P, Robertson IM (2011) On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels. Acta Mater 59(4):1601–1606. doi:10.1016/j.actamat.2010.11.024

    Article  Google Scholar 

  • Momotani Y, Shibata A, Terada D, Tsuji N (2015) Hydrogen embrittlement behavior at different strain rates in low-carbon martensitic steel. Mater Today Proc 2S3:S735–S738. doi:10.1016/j.matpr.2015.07.387

    Article  Google Scholar 

  • Nagao A, Smith SD, Dadfarnia M, Sofronis P, Robertson IM (2012) The role of hydrogen in hydrogen embrittlement fracture of lath martensitic steel. Acta Mater 60(13–14):5182–5189. doi:10.1016/j.actamat.2012.06.040

    Article  Google Scholar 

  • Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE (2015) Hydrogen embrittlement understood. Metall Mater Trans B 46(3):1085–1103. doi:10.1007/s11663-015-0325-y

    Article  Google Scholar 

  • Shibata A, Murata T, Takahashi H, Matsuoka T, Tsuji N (2015) Characterization of hydrogen-related fracture behavior in as-quenched low-carbon martensitic steel and tempered medium-carbon martensitic steel. Metall Mater Trans A 46(12):5685–5696. doi:10.1007/s11661-015-3176-x

    Article  Google Scholar 

  • Shibata A, Takahashi H, Tsuji N (2012) Microstructural and crystallographic features of hydrogen-related crack propagation in low carbon martensitic steel. ISIJ Int 52(2):208–212. doi:10.2355/isijinternational.52.208

    Article  Google Scholar 

  • Shiozawa K, Morii Y, Nishino S, Lu L (2006) Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime. Int J Fatigue 28(11):1521–1532. doi:10.1016/j.ijfatigue.2005.08.015

    Article  Google Scholar 

  • Solanki KN, Tschopp MA, Bhatia MA, Rhodes NR (2012) Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in \(\upalpha \)-Fe. Metall Mater Trans A 44(3):1365–1375. doi:10.1007/s11661-012-1430-z

    Article  Google Scholar 

  • Takai K, Seki J, Homma Y (1995) Observation of trapping sites of hydrogen and deuterium in high-strength steels by using secondary ion mass spectrometry. Mater Trans JIM 36(9):1134–1139

    Article  Google Scholar 

  • Wang M, Akiyama E, Tsuzaki K (2005) Effect of hydrogen and stress concentration on the notch tensile strength of AISI 4135 steel. Mater Sci Eng A 398(1–2):37–46. doi:10.1016/j.msea.2005.03.008

  • Wang M, Akiyama E, Tsuzaki K (2007) Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros Sci 49(11):4081–4097. doi:10.1016/j.corsci.2007.03.038

    Article  Google Scholar 

  • Wang G, Yan Y, Li J, Huang J, Su Y, Qiao L (2013) Hydrogen embrittlement assessment of ultra-high strength steel 30CrMnSiNi\(_{2}\). Corros Sci 77:273–280. doi:10.1016/j.corsci.2013.08.013

    Article  Google Scholar 

  • Yamaguchi M, Ebihara K, Itakura M, Kadoyoshi T, Suzudo T, Kaburaki H (2010) First-principles study on the grain boundary embrittlement of metals by solute segregation: Part II. Metal (Fe, Al, Cu)-hydrogen (H) systems. Metall Mater Trans A 42(2):330–339. doi:10.1007/s11661-010-0380-6

    Article  Google Scholar 

  • Yamaguchi M, Kameda J, Ebihara K, Itakura M, Kaburaki H (2012) Mobile effect of hydrogen on intergranular decohesion of iron: first-principles calculations. Philos Mag 92(11):1349–1368. doi:10.1080/14786435.2011.645077

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a Grant-in-Aid for Scientific Research (B) (No. 15H04158), and the Elements Strategy Initiative for Structural Materials (ESISM), all through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinobu Shibata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, A., Matsuoka, T., Ueno, A. et al. Fracture surface topography analysis of the hydrogen-related fracture propagation process in martensitic steel. Int J Fract 205, 73–82 (2017). https://doi.org/10.1007/s10704-017-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0182-6

Keywords

Navigation