Skip to main content
Log in

A model study of cavity growth in superplasticity using single premachined holes

  • Mechanical Behavior
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Experiments were conducted on a superplastic copper alloy to investigate the growth of single holes machined in the gage length prior to testing. Specimens were deformed in tension in the three regions of flow associated with superplastic materials. Within each flow region, three distinct stages of hole growth were identified. Initially, in stage 1, the hole simultaneously increases in length along the tensile axis but decreases in the dimension measured perpendicular to the tensile axis (“transverse contraction”). Subsequently, in stage 2, the hole grows both along and perpendicular to the tensile axis (“transverse growth”). Finally, in stage 3, a crack nucleates on either side of the hole and propagates to cause failure (“crack propagation”). It is shown that the transitions between the different stages of growth is dependent upon the initiation and development of macroscopic necking adjacent to the hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Bampton and J.W. Edington:Metall. Trans. A, 1982, vol. 13A, pp. 1721–27.

    Google Scholar 

  2. B.P. Kashyap and A.K. Mukherjee:Res. Mech., 1986, vol. 17, p. 293.

    Google Scholar 

  3. J. Pilling and N. Ridley.Res. Mech., 1988, vol. 23, p. 31.

    CAS  Google Scholar 

  4. A.H. Chokshi, A.K. Mukherjee, and T.G. Langdon:Mater. Sci. Eng., 1993, vol. R10, p. 237.

    Google Scholar 

  5. X.-G. Jiang, J.C. Earthman, and F.A. Mohamed:J. Mater. Sci., 1994, vol. 29, p. 5499.

    Article  CAS  Google Scholar 

  6. H.C. Kim, T.H. Ahn, C.H. So, Y. Ma, X. Zhao, and T.G. Langdon:J. Mater. Res., 1994, vol. 9, p. 2238.

    CAS  Google Scholar 

  7. C.H. Caceres and D.S. Wilkinson:Acta Metall., 1984, vol. 32, p. 423.

    Article  CAS  Google Scholar 

  8. A.H. Chokshi and A.K. Mukherjee:Mater. Sci. Eng., 1989, vol. A110, p. 49.

    CAS  Google Scholar 

  9. A.H. Chokshi and T.G. Langdon:Acta Metall. Mater., 1990, vol. 38, p. 867.

    Article  CAS  Google Scholar 

  10. D.W. Livesey and N. Ridley:J. Mater. Sci., 1982, vol. 17, p. 2257.

    Article  Google Scholar 

  11. A.H. Chokshi and T.G. Langdon:Acta Metall., 1989, vol. 37, p. 715.

    Article  CAS  Google Scholar 

  12. A.H. Chokshi and T.G. Langdon:J. Mater. Sci., 1989, vol. 24, p. 143.

    Article  CAS  Google Scholar 

  13. H. Iwasaki, M. Mabuchi, K. Higashi, and T.G. Langdon:Mater. Sci. Forum, 1994, vols. 170–172, p. 537.

    Article  Google Scholar 

  14. M. Mabuchi, H. Iwasaki, K. Higashi, and T.G. Langdon:Mater. Sci. Technol., in press.

  15. M.V. Speight and W. Beeré:Met. Sci., 1975, vol. 9, p. 190.

    Article  Google Scholar 

  16. J.W. Hancock:Met. Sci., 1976, vol. 10, p. 319.

    Article  CAS  Google Scholar 

  17. G.H. Edward and M.F. Ashby:Acta Metall., 1979, vol. 27, p. 1505.

    Article  CAS  Google Scholar 

  18. A.H. Chokshi and T.G. Langdon:Acta Metall., 1987, vol. 35, p. 1089.

    Article  CAS  Google Scholar 

  19. Y. Ma and T.G. Langdon:Mater. Res. Soc. Symp. Proc., 1990, vol. 196, p. 39.

    CAS  Google Scholar 

  20. R.A. Tait and D.M.R. Taplin:Scripta Metall., 1979, vol. 13, p. 77.

    Article  CAS  Google Scholar 

  21. R.A. Tait and D.M.R. Taplin: inMechanical Behaviour of Materials, K.J. Miller and R.F. Smith, eds., Pergamon Press, Oxford, United Kingdom, 1980, [vol. 2,] p. 663.

    Google Scholar 

  22. D.S. Wilkinson and C.H. Caceres:Mater. Sci. Technol., 1986, vol. 2, p. 1086.

    CAS  Google Scholar 

  23. N. Furushiro and T.G. Langdon: inSuperplasticity and Superplastic Forming, C.H. Hamilton and N.E. Paton, eds., TMS, Warrendale, PA, 1988, p. 197.

    Google Scholar 

  24. N. Furushiro and T.G. Langdon: inProc. X Inter-American Conf. on Materials Technology, Institute de Investigaciones Eléctricas, Cuernavaca, Mexico, 1989, p. 18.9.

    Google Scholar 

  25. Z.X. Guo and N. Ridley:Mater. Sci. Technol., 1990, vol. 6, p. 516.

    CAS  Google Scholar 

  26. S.-A. Shei and T.G. Langdon:J. Mater. Sci., 1978, vol. 13, p. 1084.

    Article  CAS  Google Scholar 

  27. T.G. Langdon:Met. Sci., 1982, vol. 16, p. 175.

    Google Scholar 

  28. A.H. Chokshi and T.G. Langdon:Acta Metall. Mater., 1990, vol. 38, p. 867.

    Article  CAS  Google Scholar 

  29. R.G. Fleck, C.J. Beevers, and D.M.R. Taplin:J. Mater. Sci., 1974, vol. 9, p. 1737.

    Article  CAS  Google Scholar 

  30. R.G. Fleck, D.M.R. Taplin, and C.J. Beevers:Acta Metall., 1975, vol. 23, p. 415.

    Article  CAS  Google Scholar 

  31. R.G. Fleck, C.J. Beevers, and D.M.R. Taplin:Met. Sci., 1975, vol. 9, p. 49.

    Article  CAS  Google Scholar 

  32. R.G. Fleck, C.J. Beevers, and D.M.R. Taplin:Met. Sci., 1976, vol. 10, p. 413.

    Article  CAS  Google Scholar 

  33. A.H. Chokshi:Metall. Trans. A, 1987, vol. 18A, pp. 63–67.

    CAS  Google Scholar 

  34. S.-A. Shei and T.G. Langdon:Acta Metall., 1978, vol. 26, p. 639.

    Article  CAS  Google Scholar 

  35. S.-A. Shei and T.G. Langdon:Acta Metall., 1978, vol. 26, p. 1153.

    Article  CAS  Google Scholar 

  36. D.A. Miller and T.G. Langdon:Scripta Metall., 1980, vol. 14, p. 179.

    Article  Google Scholar 

  37. F.A. McClintock, S.M. Kaplan, and C.A. Berg:Int. J. Fract. Mech., 1966, vol. 2, p. 614.

    Google Scholar 

  38. F.A. McClintock:J. Appl. Mech., 1968, vol. 35, p. 363.

    Google Scholar 

  39. B. Budiansky, J.W. Hutchinson, and S. Slutsky: inMechanics of Solids, H.G. Hopkins and M.J. Stowell, eds., Pergamon Press, Oxford, United Kingdom, 1982, p. 13.

    Google Scholar 

  40. S. Nemat-Nasser and M. Hori:J. Appl. Phys., 1987, vol. 62, p. 2746.

    Article  Google Scholar 

  41. J.R. Rice: inTime Dependent Fracture of Materials at Elevated Temperatures, S. Wolf, ed., United States Department of Energy, Washington, DC, 1979, p. 130.

    Google Scholar 

  42. A. Needleman and J.R. Rice:Acta Metall., 1980, vol. 28, p. 1315.

    Article  CAS  Google Scholar 

  43. F.A. Mohamed and T.G. Langdon:Acta Metall., 1981, vol. 29, p. 911.

    Article  CAS  Google Scholar 

  44. W. Beeré and M.V. Speight:Met. Sci., 1978, vol. 12, p. 172.

    Article  Google Scholar 

  45. A.C.F. Cocks and M.F. Ashby:Met. Sci., 1980, vol. 14, p. 395.

    Article  Google Scholar 

  46. A.C.F. Cocks and M.F. Ashby:Met. Sci., 1982, vol. 16, p. 465.

    Article  Google Scholar 

  47. M.J. Stowell:Met. Sci., 1980, vol. 14, p. 267.

    Article  CAS  Google Scholar 

  48. M.J. Stowell, D.W. Livesey, and N. Ridley.Acta Metall., 1984, vol. 32, p. 35.

    Article  Google Scholar 

  49. J. Pilling:Mater. Sci. Technol., 1985, vol. 1, p. 461.

    Google Scholar 

  50. M.J. Stowell: inSuperplasticity of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., TMS-AIME, Warrendale, PA, 1982, p. 321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chokshi, A.H., Langdon, T.G. A model study of cavity growth in superplasticity using single premachined holes. Metall Mater Trans A 27, 2532–2539 (1996). https://doi.org/10.1007/BF02652347

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652347

Keywords

Navigation