Skip to main content
Log in

Kinetics of pyrite oxidation in sodium hydroxide solutions

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The kinetics of pyrite oxidation in sodium hydroxide solution were investigated in a stirred reactor, under temperatures ranging from 50 °C to 85 °C, oxygen partial pressures of up to 1 atm, particle size fractions from -150 + 106 to -38 + 10µm (-100 + 150 mesh to -400 mesh + 10 µ), and pH values of up to 12.5. The surface reaction is represented by the rate equation:-dN/dt = Sbk″pO0.5 2[oH- 0.25/(1 +k‴ pO2 0.5) where N represents moles of pyrite, S is the surface area of the solid particles,k″ andk″ are constants,b is a stoichiometric factor, pO2 is the oxygen partial pressure, and [OH-] is the hydroxyl ion concentration. The corresponding fractional conversion (X) vs time behavior follows the shrinking particle model for chemical reaction control: 1 - (1 -X)1/3 =k ct The rate increases with the reciprocal of particle size and has an activation energy of 55.6 kJ/mol (13.6 kcal/mol). The relationship between reaction rate and oxygen partial pressure resembles a Langmuir-type equation and thus suggests that the reaction involves adsorption or desorption of oxygen at the interface. The square-root rate law may be due to the adsorption of a dissociated oxygen molecule. The observed apparent reaction order with respect to the hydroxyl ion concentration is a result of a complex combination of processes involving the oxidation and nydrolysis of iron, oxidation and hydrolysis of sulfur, and the oxygen reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M.J. Gray:Trans. Inst. Min. Metall., 1955-56, vol. 65, pp. 55–65.

    Google Scholar 

  2. I.H. Warren:Aust. J. Appl. Sci., 1956, vol. 7, pp. 346–58.

    CAS  Google Scholar 

  3. J.F. Stenhouse and W.M. Armstrong:Can. Min. Met. Bull., 1952, Jan. 5, pp. 49–53.

  4. J.T. Woodcock:The Aust. IMM, 1961, No. 198, pp. 47–84.

    Google Scholar 

  5. E.E. Smith and K.S. Shumate: No. 14010 FPS02/70, U.S. Department of Interior, Washington, DC, 1970.

  6. H. Majima and E. Peters:TMS-AIME, 1966, vol. 236, pp. 1409–13.

    CAS  Google Scholar 

  7. M.B. Goldhaber:Am. J. Sci., 1983, vol. 238, pp. 193–217.

    Article  Google Scholar 

  8. A.R. Burkin and A.M. Edwards:Proc. 6th Int. Cong. Mineral Processing, Cannes, 1963, A. Roberts, ed., Pergamon, New York, NY, 1965, pp. 159–69.

    Google Scholar 

  9. J.B. Hiskey and W.J. Schutt:Interfacing Technologies in Solution Mining, AIME, New York, NY, 1982, pp. 55–74.

    Google Scholar 

  10. T.D. Wheelock:Chern. Eng. Commun., 1980, vol. 12, pp. 137–59.

    Article  Google Scholar 

  11. K.C. Chuang, M.C. Chen, R.T. Greer, R. Markuszewski, Y. Sun, and T.D. Wheelock:Chem. Eng. Commun., 1980, vol. 7, pp. 79–94.

    Article  CAS  Google Scholar 

  12. M.A. McKibben and H.L. Barnes:Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 1509–20.

    Article  CAS  Google Scholar 

  13. C.T. Mathews and R.G. Robins:Aust. Chem. Eng., 1974, Nov.–Dec, pp. 19–24.

  14. P.C. Singer and W. Stumm:Science, 1970, vol. 167, pp. 1121–23.

    Article  CAS  Google Scholar 

  15. R.T. Lowson:Chem. Rev., 1982, vol. 82, pp. 461–97.

    Article  CAS  Google Scholar 

  16. F.A. Forward and J. Halpern:J. Met. Trans. AIME, 1955, Mar., pp. 463–66.

  17. V.H. Gottschalk and H.A. Buehler:Econ. Geol., 1912, vol. 7 (15), pp. 15–34.

    Article  CAS  Google Scholar 

  18. D.R. McKay and J. Halpern:TMS-AIME, 1958, June, pp. 301–08.

  19. L.K. Bailey and E. Peters:Can. Met. Q., 1976, vol. 15, pp. 333–44.

    CAS  Google Scholar 

  20. V.G. Papangelakis and G.P. Demopoulos:Hydrometallurgy, 1991, vol. 26, pp. 309–25.

    Article  CAS  Google Scholar 

  21. T. Koslides and V.S.T. Ciminelli:Hydrometallurgy, 1992, vol. 30, pp. 87–106.

    Article  CAS  Google Scholar 

  22. V.S.T. Ciminelli and K. Osseo-Asare:Metall. Mater. Trans. B, 1995, vol. 26B, pp. 209–18.

    CAS  Google Scholar 

  23. B.J. Heinrich, M.D. Grimes, and J. Puckett: inTreatise on Analytical Chemistry, I.M. Kolthoff and P.J. Elving, eds., Interscience, New York, NY, 1961, vol. 7, part II, section A, pp. 1–135.

    Google Scholar 

  24. V.S.T. Ciminelli: Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 1987.

    Google Scholar 

  25. G.M. Kostina and A.S. Chernyak:Zhurnal Prikladnoi Khimii, 1979, vol. 52 (7), pp. 1532–35.

    CAS  Google Scholar 

  26. O. Levenspiel:Chemical Reaction Engineering, John Wiley and Sons, Inc., New York, NY, 1972.

    Google Scholar 

  27. Rate Processes in Extractive Metallurgy, H.Y. Sohn and M.E.Wadsworth, eds., Plenum Press, New York, NY, 1979.

    Google Scholar 

  28. J.J.C. Jansz:Hydrometallurgy, 1984, vol. 12, pp. 225–43.

    Article  CAS  Google Scholar 

  29. R.E. Reed-Hill:Physical Metallurgy Principles, Van Nostrand,New York, NY, 1964.

    Google Scholar 

  30. P.G. Shewmon:Diffusion in Solids, McGraw-Hill, New York, NY, 1983.

    Google Scholar 

  31. CRC Handbook of Chemistry and Physics, 64th ed., R.C. Weast,ed., CRC Press, Boca Raton, FL, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Mineral Engineering, Pennsylvania State University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciminelli, V.S.T., Osseo-Asare, K. Kinetics of pyrite oxidation in sodium hydroxide solutions. Metall Mater Trans B 26, 677–685 (1995). https://doi.org/10.1007/BF02651713

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651713

Keywords

Navigation