Skip to main content
Log in

Magnetic contributions to the thermodynamic functions of alloys and the phase equilibria of Fe-Ni system below 1200 K

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A generalized approach is proposed to calculate the magnetic contribution to the thermodynamic functions of alloys. This approach is applied successfully to the Fe-Ni binary system. The predicted magnetic specific heat of the fcc phase at 75 at. Pct Ni is in agreement with the experimental data within the accuracies of the data and the predicted values. The magnetic contributions to the Gibbs energies of the fcc and bcc phases for the Fe-Ni alloys obtained from this approach are added to the nonmagnetic portion of the Gibbs energies. The nonmagnetic portion of the Gibbs energy of the fcc phase is obtained from extensive thermochemical data at high temperatures as discussed in the paper immediately following this one. The total Gibbs energies of the fcc, bcc, and the orderedγ′-(FeNi3) phases are then used to calculate/predict phase equilibria of the Fe-Ni binary at temperatures lower than 1200 K. The calculated equilibria are in agreement with available experimental data. In addition, a irascibility gap of the fcc phase at low temperatures is predicted, resulting in the formation of a monotectoid equilibrium at 662 K as given below: {fx1361-02} The existence of the miscibility gap is due to the magnetic Gibbs energy term of the fcc phase which is composition dependent. Experimental results reported in the literature support the predicted miscibility gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zener:Trans. AIME, 1955, vol. 203, p. 619.

    Google Scholar 

  2. J.L. Meijering:Philips Res. Repts., 1963, vol. 18, p. 318.

    CAS  Google Scholar 

  3. M. Hillert, T. Wada, and H. Wada:J. Iron Steel Inst., 1967, vol. 205, p. 539.

    Google Scholar 

  4. L. Kaufman and H. Bernstein:Computer Calculation of Phase Diagrams, Academic Press, New York, NY, 1970.

    Google Scholar 

  5. G. Inden: Project Meeting CALPHAD V, 21–25 June 1976, Max- Planck-Inst. Eisenforschung, Düsseldorf, W. Germany, 1976, III 4/1.

  6. A. P. Miodownik:CALPHAD, 1977, vol. 1, p. 133.

    Article  CAS  Google Scholar 

  7. M. Hillert and M. Jarl:CALPHAD, 1978, vol. 2, p. 227.

    Article  CAS  Google Scholar 

  8. T. Nishizawa, M. Hasebe, and M. Ko:Acta Metall., 1979, vol. 27, p. 817.

    Article  CAS  Google Scholar 

  9. G. Inden:Physica, 1981, vol. 103B, p. 82.

    Google Scholar 

  10. G. Inden:Bull. Alloy Phase Diagr., 1982, vol. 2, p. 412.

    CAS  Google Scholar 

  11. A. P. Miodownik:Bull. Alloy Phase Diagr., 1982, vol. 2, p. 406.

    CAS  Google Scholar 

  12. S. Hertzman and B. Sundman:CALPHAD, 1982, vol. 6, p. 67.

    Article  CAS  Google Scholar 

  13. Y. -Y. Chuang, R. Schmid, and Y. A. Chang:Metall. Trans. A, 1985, vol. 16A, p. 153.

    CAS  Google Scholar 

  14. Y. -Y. Chuang, R. Schmid, and Y. A. Chang:Metall. Trans. A, 1984, vol. 15A, p. 1921.

    CAS  Google Scholar 

  15. H. Harvig, G. Kirchner, and M. Hillert:Metall. Trans., 1972, vol. 3, p. 329.

    CAS  Google Scholar 

  16. O. Kubaschewski, J. F. Smith, and D. M. Bailey:Z. Metallk., 1977, vol. 68, p. 495.

    CAS  Google Scholar 

  17. O. Kubaschewski:Iron-Binary Phase Diagrams, Springer-Verlag, Berlin, Heidelberg, New York, 1982, p. 73.

    Google Scholar 

  18. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park, OH, 1973, p. 847.

    Google Scholar 

  19. Y.-Y. Chuang, K.-C. Hsieh, and Y. A. Chang:Metall. Trans. A, 1986, vol. 17A, pp. 1373–80.

    CAS  Google Scholar 

  20. C. Wagner and W. Schottky:Z. Phys. Chem., 1930, vol. B11, p. 163; also C. Wagner:Thermodynamics of Alloys, Addison-Wesley, Reading, MA, 1952, p. 54.

    Google Scholar 

  21. Y.A. Chang and J.P. Neumann:Prog. Solid State Chem., 1982, vol. 14, p. 221.

    Article  CAS  Google Scholar 

  22. J. P. Neumann, Y. A. Chang, and C.M. Lee:Acta Metall., 1976, vol. 24, p. 593.

    Article  CAS  Google Scholar 

  23. I. Gyuk, W. W. Liang, and Y. A. Chang:J. Less-Common Metals, 1974, vol. 38, p. 249.

    Article  CAS  Google Scholar 

  24. P. Leech and C. Sykes:Phil. Mag., 1939, vol. 27, p. 742.

    CAS  Google Scholar 

  25. T. G. Kollie and C. R. Brooks:Phys. Stat. Sol. (a), 1973, vol. 19, p. 545; also C. R. Brooks, P. J. Meschter, and T. G. Kollie:Phys. Stat. Sol. (a), 1982, vol. 73, p. 189.

    Article  CAS  Google Scholar 

  26. R. J. Weiss and K. J. Tauer:Phys. Rev., 1956, vol. 102, p. 1490; alsoTheory of Alloy Phases, ASM, Cleveland, OH, 1956.

    Article  CAS  Google Scholar 

  27. L. Kaufman and H. Nesor:Z. Metallk., 1973, vol. 64, p. 249.

    CAS  Google Scholar 

  28. H. Asano:J. Phys. Soc. Japan, 1969, vol. 27, p. 542.

    Article  CAS  Google Scholar 

  29. A. P. Miodownik: International Symposium on Metallurgical Chemistry; Application in Ferrous Metallurgy, University of Sheffield, Sheffield, England, 1971.

  30. J. Crangle and G. C. Hallam:Proc. Roy. Soc, 1963, vol. A272, p. 119.

    Google Scholar 

  31. K. Hoselitz and W. Sucksmith:Proc. Roy. Soc. (London), 1943, vol. A181,p. 303.

    CAS  Google Scholar 

  32. E. A. Owen and A. H. Sully:Phil. Mag., 1939, vol. 27, p. 614; see also 1941, vol. 31, p. 314.

    CAS  Google Scholar 

  33. A.D. Romig and J.I. Goldstein:Metall. Trans. A, 1980, vol. 11A, p. 1151.

    CAS  Google Scholar 

  34. E. A. Owen and Y. H. Liu:J. Iron Steel Inst., 1949, vol. 163, p. 132.

    CAS  Google Scholar 

  35. J.I. Goldstein and R.E. Ogilvie:TMS-A1ME, 1965, vol. 233, p. 2083.

    CAS  Google Scholar 

  36. A.T. Pickles and W. Sucksmith:Proc. Roy. Soc. (London), 1940, vol. A175, p. 331.

    CAS  Google Scholar 

  37. T. Heumann and G. Karsten:Arch. Eisenhüttenw., 1963, vol. 34, p. 781.

    CAS  Google Scholar 

  38. F. Hund:Z. Elektrochem., 1952, vol. 56, p. 609.

    CAS  Google Scholar 

  39. J. K. Van Deen and F. Van Der Woude:Acta Metall., 1981, vol. 29, p. 1255.

    Article  Google Scholar 

  40. R. J. Wakelin and E.L. Yates:Proc. Phys. Soc. (London), 1953, vol. B66, p. 221.

    Google Scholar 

  41. S. M. Allen and J. W. Cahn: inProceedings of the Materials Research Society Symposium, Alloy Phase Diagrams, L. H. Bennett, T. B. Massalski, and B.C. Giessen, eds., North Holland, New York, NY, 1983, pp. 195–210.

  42. L. Kaufman and M. Cohen:Trans. AIME, 1956, vol. 206, p. 1393.

    Google Scholar 

  43. M. Hansen and K. Anderko:Constitution of Binary Alloys, 2nd ed., McGraw-Hill, New York, NY, 1958.

    Google Scholar 

  44. R. P. Elliott:Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1965.

    Google Scholar 

  45. F. A. Shunk:Constitution of Binary Alloys, McGraw-Hill, New York, NY, 1969.

    Google Scholar 

  46. L. Kaufman, E. V. Clougherty, and R. J. Weiss:Acta Metall., 1963, vol. 11, p. 323.

    Article  CAS  Google Scholar 

  47. H. P. Miodownik:Acta Metall., 1970, vol. 18, p. 541.

    Article  CAS  Google Scholar 

  48. W. Bendick and W. Pepperhoff:Acta Metall., 1982, vol. 30, p. 679.

    Article  CAS  Google Scholar 

  49. A. Chamberod, J. Laugier, and J. M. Penisson:J. Magn. Magn. Mat., 1979, vol. 10, p. 139.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, YY., Chang, Y., Schmid, R. et al. Magnetic contributions to the thermodynamic functions of alloys and the phase equilibria of Fe-Ni system below 1200 K. Metall Trans A 17, 1361–1372 (1986). https://doi.org/10.1007/BF02650117

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650117

Keywords

Navigation