Skip to main content
Log in

Modeling Magnetically Influenced Phase Transformations in Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We have investigated four models for calculating the contribution of an applied magnetic field to the free energy of Fe and Fe alloys—Weiss Molecular Field Theory (WMFT), Kuz’min, Arrott, and Curie-Weiss. On the basis of these models, the shifts in phase transformation including both ferromagnetic and paramagnetic phases as a function of magnetic field and alloy content can be predicted. The Kuz’min model is easiest to solve and is also best able to predict the trends in experimentally observed shifts in ferrite/austenite phase transformations for Fe-based alloys under an applied magnetic field both below and near the Curie temperature. For phase transformations above the Curie temperature, the predictions using the Curie-Weiss form with WMFT parameters, here extended to alloy systems, are in good agreement with experimental results. Different aspects of the four models have been discussed in detail with a view to developing a reliable methodology to predict shifts in phase diagrams as a function of alloy content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Shimotomai, K. Maruta, K. Mine, M. Matsui: Acta Mater., 2003, vol. 51, pp. 2921-32.

    Article  CAS  Google Scholar 

  2. M. Shimotomai, K.-i. Maruta: Scripta Mater., 2000, vol. 42, pp. 499-503.

    Article  CAS  Google Scholar 

  3. L. Meng, X. Zhou, J. Chen: Mater. Charact., 2015, vol. 105, pp. 13-7.

    Article  CAS  Google Scholar 

  4. R.A. Jaramillo, S.S. Babu, G.M. Ludtka, R.A. Kisner, J.B. Wilgen, G. Mackiewicz-Ludtka, D.M. Nicholson, S.M. Kelly, M. Murugananth, H.K.D.H. Bhadeshia: Scripta Mater., 2005, vol. 52, pp. 461-6.

    Article  CAS  Google Scholar 

  5. Y.D. Zhang, C. Esling, M. Calcagnotto, M.L. Gong, X. Zhao, L. Zuo: J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 6501.

    Article  CAS  Google Scholar 

  6. 6. Y.D. Zhang, C. Esling, M. Calcagnotto, M.L. Gong, H. Klein, X. Zhao, L. Zuo (2008) Texture, Stress, and Microstructure 2008:349854

    Article  Google Scholar 

  7. H.D. Joo, S.U. Kim, N.S. Shin, Y.M. Koo: Mater. Lett., 2000, vol. 43, pp. 225-9.

    Article  CAS  Google Scholar 

  8. M.C. Gao, T.A. Bennett, A.D. Rollett, D.E. Laughlin: J. Phys. D: Appl. Phys., 2006, vol. 39, pp. 2890.

    Article  CAS  Google Scholar 

  9. T. Garcin, S. Rivoirard, C. Elgoyhen, E. Beaugnon: Acta Mater., 2010, vol. 58, pp. 2026-32.

    Article  CAS  Google Scholar 

  10. G.M. Ludtka, R.A. Jaramillo, R.A. Kisner, D.M. Nicholson, J.B. Wilgen, G. Mackiewicz-Ludtka, P.N. Kalu: Scripta Mater., 2004, vol. 51, pp. 171-4.

    Article  CAS  Google Scholar 

  11. Z.N. Zhou, K.M. Wu: Scripta Mater., 2009, vol. 61, pp. 670-3.

    Article  CAS  Google Scholar 

  12. T.P. Hou, K.M. Wu, W.M. Liu, M.J. Peet, C.N. Hulme-Smith, L. Guo, L. Zhuang: Sci. Rep., 2018, vol. 8, pp. 3049.

    Article  CAS  Google Scholar 

  13. T.P. Hou, K.M. Wu: Acta Mater., 2013, vol. 61, pp. 2016-24.

    Article  CAS  Google Scholar 

  14. Y. Zhang, X. Zhao, N. Bozzolo, C. He, L. Zuo, C. Esling: ISIJ Int., 2005, vol. 45, pp. 913-7.

    Article  CAS  Google Scholar 

  15. T.P. Hou, M.J. Peet, C.N. Hulme-Smith, K.M. Wu, Y. Li, L. Guo: Scripta Mater., 2016, vol. 120, pp. 76-9.

    Article  CAS  Google Scholar 

  16. T.P. Hou, Y. Li, K.M. Wu, M.J. Peet, C.N. Hulme-Smith, L. Guo: Acta Mater., 2016, vol. 102, pp. 24-31.

    Article  CAS  Google Scholar 

  17. 17. H.L. Lukas, S.G. Fries, B. Sundman (2007) Computational thermodynamics: the Calphad method. Cambridge university press, Cambridge

    Book  Google Scholar 

  18. X.J. Hao, H. Ohtsuka: Materials Transactions, 2004, vol. 45, pp. 2622-5.

    Article  CAS  Google Scholar 

  19. 19. R.M. Bozorth (1993) Ferromagnetism. Wiley-VCH, Hoboken

    Book  Google Scholar 

  20. 20. B.D. Cullity, C.D. Graham (2011) Introduction to magnetic materials. Wiley, New York

    Google Scholar 

  21. T. Garcin, S. Rivoirard, E. Beaugnon: J. Phys. D: Appl. Phys., 2011, vol. 44, pp. 015001.

    Article  Google Scholar 

  22. T. Fukuda, M. Yuge, J.-h. Lee, T. Terai, T. Kakeshita: ISIJ Int., 2006, vol. 46, pp. 1267-70.

    Article  CAS  Google Scholar 

  23. 23. T. Garcin (2009) Thermodynamic and kinetic effects of static magnetic field on phase transformations in low-alloy steels. Joseph Fourier University, Grenoble

    Google Scholar 

  24. H.D. Joo, S.U. Kim, Y.M. Koo, N.S. Shin, J.K. Choi: Metall. Mater. Trans. A., 2004, vol. 35, pp. 1663-8.

    Article  Google Scholar 

  25. X.J. Liu, Y.M. Fang, C.P. Wang, Y.Q. Ma, D.L. Peng: J. Alloys Compd., 2008, vol. 459, pp. 169-73.

    Article  CAS  Google Scholar 

  26. J.K. Choi, H. Ohtsuka, Y. Xu, W.Y. Choo: Scripta Mater., 2000, vol. 43, pp. 221-6.

    Article  CAS  Google Scholar 

  27. G.H. Zhang, M. Enomoto, N. Hosokawa, M. Kagayama, Y. Adachi: J. Magn. Magn. Mater., 2009, vol. 321, pp. 4010-6.

    Article  CAS  Google Scholar 

  28. M. Enomoto, H. Guo, Y. Tazuke, Y. Abe, M. Shimotomai: Metall. Mater. Trans. A., 2001, vol. 32, pp. 445-53.

    Article  Google Scholar 

  29. 29. H. Guo, M. Enomoto (2000) Mater. Trans. JIM 41:911-16

    Article  CAS  Google Scholar 

  30. S. Farjami, M. Yuge, T. Fukuda, T. Terai, T. Kakeshita: Mater. Trans., 2007, vol. 48, pp. 2821-5.

    Article  CAS  Google Scholar 

  31. A. Arrott: J. Magn. Magn. Mater., 2010, vol. 322, pp. 1047-51.

    Article  CAS  Google Scholar 

  32. M. Kuzmin (2008) Phys. Rev. B. 77:184431

    Article  Google Scholar 

  33. 33. J. Crangle, G. Goodman (1971) Proc. R. Soc. London Ser. A 321:477-91

    Article  CAS  Google Scholar 

  34. L.D. Landau: Ukr. J. Phys., 1937, vol. 11, pp. 19-32.

    Google Scholar 

  35. W. Xiong, H. Zhang, L. Vitos, M. Selleby: Acta Mater., 2011, vol. 59, pp. 521-30.

    Article  CAS  Google Scholar 

  36. I. Ohnuma, H. Enoki, O. Ikeda, R. Kainuma, H. Ohtani, B. Sundman, K. Ishida: Acta Mater., 2002, vol. 50, pp. 379-93.

    Article  CAS  Google Scholar 

  37. 37. J. Crangle, G. Hallam (1963) Proc. R. Soc. London Ser. A 272:119-32

    Article  CAS  Google Scholar 

  38. P. James, O. Eriksson, B. Johansson, I. Abrikosov: Phys. Rev. B., 1999, vol. 59, pp. 419.

    Article  CAS  Google Scholar 

  39. D. Bardos: J. Appl. Phys., 1969, vol. 40, pp. 1371-2.

    Article  CAS  Google Scholar 

  40. H. Stuart, N. Ridley: J. Phys. D: Appl. Phys., 1969, vol. 2, pp. 485-91.

    Article  Google Scholar 

  41. M.V. Nevitt, A.T. Aldred: J. Appl. Phys., 1963, vol. 34, pp. 463-8.

    Article  CAS  Google Scholar 

  42. Y. Kakehashi: Phys. Rev. B., 1985, vol. 32, pp. 3035.

    Article  CAS  Google Scholar 

  43. M. Fallot: Journal de Physique et le Radium, 1944, vol. 5, pp. 153-63.

    Article  CAS  Google Scholar 

  44. S. Arajs, R. Colvin, H. Chessin, J. Peck: J. Appl. Phys., 1962, vol. 33, pp. 1353-4.

    Article  CAS  Google Scholar 

  45. A.S. Belozerov, V.I. Anisimov: J. Phys.: Condens. Matter, 2016, vol. 28, pp. 345601.

    Google Scholar 

  46. S. Arajs, D. Miller: J. Appl. Phys., 1960, vol. 31, pp. 986-91.

    Article  CAS  Google Scholar 

  47. M. Abdellaoui, T. Barradi, E. Gaffet: J. Alloys Compd., 1993, vol. 198, pp. 155-64.

    Article  CAS  Google Scholar 

  48. E. Elsukov, G. Konygin, V. Barinov, E. Voronina: J. Phys.: Condens. Matter, 1992, vol. 4, pp. 7597.

    CAS  Google Scholar 

  49. T. Fukuda, M. Yuge, T. Terai, T. Kakeshita: J. Phys.: Conf. Ser, 2006, vol. 51, pp. 307.

    CAS  Google Scholar 

  50. J.E. Noakes, A. Arrott: J. Appl. Phys., 1964, vol. 35, pp. 931-2.

    Article  Google Scholar 

  51. Y. Nakagawa: J. Phys. Soc. Jpn., 1957, vol. 12, pp. 700-7.

    Article  CAS  Google Scholar 

  52. T. Garcin, S. Rivoirard, E. Beaugnon: J. Phys.: Conf. Ser, 2009, vol. 156, pp. 012010.

    Google Scholar 

  53. S. Rivoirard, T. Garcin, F. Gaucherand, O. Bouaziz, and E. Beaugnon: J. Phys.: Conf. Ser., 2006, vol. 51, pp. 122.

    Google Scholar 

  54. Y. Mitsui, Y. Ikehara, K. Takahashi, S. Kimura, G. Miyamoto, T. Furuhara, K. Watanabe. K. Koyama: J. Alloys Compd., 2015, vol. 632, pp. 251-255.

    Article  CAS  Google Scholar 

  55. TCFE9: TCS Steel and Fe-alloys Database Version 9 [Internet]. [cited 06 MAR 2020]. Available from: https://www.thermocalc.com/media/10306/tcfe9_extended_info.pdf.

  56. A. Normanton, P. Bloomfield, F. Sale, B. Argent: Metal Science, 1975, vol. 9, pp. 510-7.

    Article  CAS  Google Scholar 

  57. A.F. Guillermet: Calphad, 1989, vol. 13, pp. 1-22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Dan Field for stimulating discussions especially regarding data presentation and visualization and Prof. Victorino Franco, U. Sevilla, Spain, for bringing some prior relevant research and publications to the authors’ attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather A. Murdoch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 21, 2020; accepted March 31, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murdoch, H.A., Hernández-Rivera, E. & Giri, A. Modeling Magnetically Influenced Phase Transformations in Alloys. Metall Mater Trans A 52, 2896–2908 (2021). https://doi.org/10.1007/s11661-021-06281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06281-x

Navigation