Skip to main content
Log in

OMVPE growth of the metastable III/V alloy GaAs0.5Sb0.5

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The two crystal growth parameters most likely to affect the occurrence of GaAs0.5Sb0.5 spinodal decomposition during organometallic vapor phase epitaxial (OMVPE) growth, substrate temperature and substrate orientation, were investigated in detail. The temperature range studied was the widest over which good morphology layers could be grown, from 550 to 680° C. The InP substrate orientations used were (100), (221) and (311). The growth process was found to be diffusion controlled at high temperatures, but to be controlled by surface kinetics at temperatures below approximately 620° C, depending on substrate orientation. Growth of high quality layers was found to be much easier between 570 and 640° C. In addition, the 77 K PL intensity is much stronger for layers grown in this temperature range. The minimum PL halfwidth at 77 K is 20 meV and at 8 K is 16 meV. The typical room temperature hole mobilities are 100 cm2/Vs with hole concentrations of 2 x 1017 cm-3 in undoped material. The temperature dependence of mobility is consistent with enhanced alloy scattering. Surprisingly, the growth temperature has no significant effect on either PL halfwidth or hole mobility between 560 and 660° C. The single Raman line observed for the unannealed alloy is split after annealing into two lines corresponding to the GaAs-rich and GaSb-rich alloys on either side of the range of solid immiscibility. The spinodal decomposition apparently starts at the surface where the coherency strain, which stabilizes the single phase alloy, is smallest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Bedair, R. J. Markunas and J. A. Hutchby, Proc. 16th IEEE photovoltaic Specialists Conference, 663 (1982).

  2. H. D. Law, R. Chin, K. Nakano and R. A. Milano, IEEE J. Quantum Electron.QE-17, 275 (1981).

    Article  Google Scholar 

  3. J. R. Pessetto and G. B. Stringfellow, J. Cryst. Growth62, 1 (1983).

    Article  CAS  Google Scholar 

  4. R. E. Nahory, M. A. Pollack, J. C. DeWinter and K. M. Williams, J. Appl. Phys.48, 1607 (1977).

    Article  CAS  Google Scholar 

  5. C. G. Fonstad, M. Quillec and S. Garone, J. Appl. Phys.49, 5920 (1978).

    Article  CAS  Google Scholar 

  6. M. Quillec, H. Launois and M. C. Joncour, J. Vac. Sci. Technol.B 1, 238 (1983).

    Google Scholar 

  7. C. A. Chang, R. Ludeke, L. L. Chang and L. Esaki, Appl. Phys. Lett.31, 759 (1977).

    Article  CAS  Google Scholar 

  8. T. Waho, S. Ogawa and S. Maruyama, Jpn. Appl. Phys.16, 1875 (1977).

    Article  CAS  Google Scholar 

  9. C. B. Cooper, R. R. Saxena and M. J. Ludowise, J. Electron. Mater.11, 1001 (1982).

    CAS  Google Scholar 

  10. S. M. Bedair, M. L. Timmons, P. K. Chiang, L. Simpson and J. R. Hauser, J. Electron. Mater.12, 959 (1983).

    CAS  Google Scholar 

  11. M. J. Cherng, G. B. Stringfellow and R. M. Cohen, Appl. Phys. Lett.44, 677 (1984).

    Article  CAS  Google Scholar 

  12. G. B. Stringfellow and M. J. Cherng, J. Cryst. Growth64, 413 (1983).

    Article  CAS  Google Scholar 

  13. M. F. Gratton, R. G. Goodchild, L. Y. Juravel and J. C. Woolley, J. Electron. Mater.9, 25 (1979).

    Google Scholar 

  14. G. B. Stringfellow, J. Cryst. Growth27, 21 (1974).

    CAS  Google Scholar 

  15. G. B. Stringfellow, J. Electron. Mater.11, 903 (1982).

    CAS  Google Scholar 

  16. J. A. Venables and G. L. Price in Epitaxial Growth, J. W. Matthews, ed., Academic Press, N.Y. 1975.

    Google Scholar 

  17. J. E. Greene, J. Vac. Sci.B 1, 229 (1983).

    Article  Google Scholar 

  18. R. M. Cohen, M. J. Cherng, R. E. Benner and G. B. Stringfellow, J. Appl. Phys.57, 4817 (1985).

    Article  CAS  Google Scholar 

  19. M. J. Cherng, R. M. Cohen and G. B. Stringfellow, J. Electron. Mater.13, 799 (1984).

    CAS  Google Scholar 

  20. D. W. Shaw, J. Electrochem. Soc.115, 405 (1968).

    Article  CAS  Google Scholar 

  21. D. W. Shaw, J. Crystal Growth31, 130 (1975).

    Article  CAS  Google Scholar 

  22. G. H. Olsen, T.J. Zamerowski and F. Z. Hawrylo, J. Cryst. Growth59, 654 (1982).

    Article  CAS  Google Scholar 

  23. T. H. Chiu, W. T. Tsang, S. N. G. Chu, J. Shah and J. A. Ditzenberger, Appl. Phys. Lett.46, 408 (1985).

    Article  CAS  Google Scholar 

  24. G. B. Stringfellow, Rep. Prog:Phys.45, 469 (1982).

    Article  Google Scholar 

  25. R. B. Clough and J. J. Tietjen, AIME245, 583 (1969).

    Google Scholar 

  26. M. Kakehi, R. Shimokawa and T. Arizumi, Jpn. J. Appl. Phys.9, 1039 (1970).

    Article  CAS  Google Scholar 

  27. K. Matsushita, T. Sato, Y. Sato, Y. Sugiyama, T. Hariu and Y. Shibata, IEEE J. Electron Device.ED-13, 1092 (1984).

    Google Scholar 

  28. K. Nakashima, Jpn. J. Appl. Phys.20, 1085 (1981).

    Article  CAS  Google Scholar 

  29. M. A. Littljohn, R. A. Saddler, T. H. Glisson and J. R. Hauser, in: Proc. 7th Intern. Symp. on GaAs and Related Compounds, St. Louis, 1979, Inst. Phys. Conf. Ser. 45 (Inst. Phys., London, 1979) p. 239.

  30. H. Launois, M. Quillec, F. Glas and M. J. Treacy, in: Proc. 10th Intern. Symp. on GaAs and Related Compounds, Albuquerque, 1982, Inst. Phys. Conf. Ser. 65 (Inst. Phys., London, 1983) p. 537.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherng, M.J., Cherng, Y.T., Jen, H.R. et al. OMVPE growth of the metastable III/V alloy GaAs0.5Sb0.5 . J. Electron. Mater. 15, 79–85 (1986). https://doi.org/10.1007/BF02649907

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649907

Key words

Navigation