Skip to main content
Log in

A computer simulation of strength of metal matrix Composites with a Reaction Layer at the Interface

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The deformation and fracture behavior of metal matrix composites with a reaction layer at the fiber-matrix interface was studied by means of a computer simulation experiment, using a two-dimensional model, and the results of the simulation experiment were compared with the predictions based on the single fiber model, which has been proposed to describe the reduction of strength of composites due to a reaction layer. In the simulation experiment, the composite was regarded as an assembly of single fiber elements, in which, for each element, the reaction layer introduces a notch on the fiber surface when it is broken, which reduces the strength of the fiber if the thickness of the layer is thinner than a critical value, as has been studied by using the single fiber model. The strength of composites was reduced with increasing thickness of the reaction layer and the fracture mode became catastrophic. The strength values obtained by the simulation were equal to those based on the single fiber model only when the fracture of the fiber was caused by the extension of the notch having been introduced by premature fracture of the reaction layer. In other cases, the strength values of the simulation were lower than those predicted by the single fiber model, although the single fiber model gave approximate values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Metcalfe and M. J. Klein:Composite Materials, Academic Press, New York and London, 1974, vol. 1, pp. 125–68.

    Google Scholar 

  2. M. A. Wright and B. D. Intwala:J. Mater. Sci., 1973, vol. 8, pp. 957–63.

    Article  CAS  Google Scholar 

  3. R. J. Hill and W. F. Stuhrke:Fib. Sci. Tech., 1968, vol. 1, pp. 25–42.

    Article  CAS  Google Scholar 

  4. F. Galasso, B. Boundeau, and F. Galasso:Fib. Sci. Tech., 1969, vol. 2, pp. 89–95.

    Article  CAS  Google Scholar 

  5. P. W. Heitman, L. A. Shepard, and T. H. Courtney:J. Mech. Phys. Solids, 1973, vol. 21, pp. 75–89.

    Article  CAS  Google Scholar 

  6. A. G. Metcalfe:J. Comp. Mater., 1967, vol. 1, pp. 356–65.

    Article  CAS  Google Scholar 

  7. D. W. Petrasek and J. W. Weeton:Trans. TMS-AIME, 1964, vol. 230, pp. 977–90.

    CAS  Google Scholar 

  8. A. G. Metcalfe and M. J. Klein: Tech. Rep. AFML-TR-71-189.

  9. H. H. Grimes, R. A. Lad, and J. E. Maisel:Metall. Trans. A, 1977, vol. 8A, pp. 1999–2005.

    Article  CAS  Google Scholar 

  10. I. H. Khan:Metall. Trans. A, 1976, vol. 7A, pp. 1281–89.

    Article  CAS  Google Scholar 

  11. S. Ochiai, K. Shimomura, M. Mizuhara, and Y. Murakami:Trans. Japan Inst. Metals, 1975, vol. 16, pp. 463–71.

    Article  CAS  Google Scholar 

  12. S. Ochiai, K. Abe, and K. Osamura:J. Japan Inst. Metals, 1984, vol. 48, pp. 1028–34.

    Article  Google Scholar 

  13. S. Ochiai, K. Osamura, and Y. Murakami:Progress in Science and Engineering of Composites, JSCM, Tokyo, 1982, pp. 1331–38.

    Google Scholar 

  14. S. Ochiai and Y. Murakami:J.Mater.Sci., 1979, vol. 14, pp. 831–40.

    Article  CAS  Google Scholar 

  15. S. Ochiai and Y. Murakami:Metall. Trans. A, 1981, vol. 12A, pp. 1155–62.

    Article  Google Scholar 

  16. S. Ochiai, S. Urakawa, K. Ameyama, and Y. Murakami:Metall. Trans. A, 1980, vol. 11 A, pp. 525–30.

    Article  Google Scholar 

  17. S. Ochiai and Y. Murakami:Z. Metallkunde, 1981, vol. 72, pp. 827–31.

    Google Scholar 

  18. S. Ochiai, Y Irie, K. Osamura, and Y. Murakami:Z. Metallkunde, 1983, vol. 74, pp. 44–48.

    CAS  Google Scholar 

  19. S. Ochiai, K. Osamura, and Y. Murakami:Z. Metallkunde, 1983, vol. 74, pp. 68–73.

    CAS  Google Scholar 

  20. S. Ochiai, K. Osamura, and Y. Murakami:Z. Metallkunde, 1984, vol. 75, pp. 231–37.

    Google Scholar 

  21. S. Ochiai, K. Osamura, and Y. Murakami:Z. Metallkunde, 1984, vol. 75, pp. 238–42.

    CAS  Google Scholar 

  22. M. Kh. Shorshorov, L. M. Ustinov, A. M. Zirlin, V. I. Olefirenko, and L. V. Vinogradov:J. Mater. Sci., 1979, vol. 14, pp. 1850–61.

    Article  CAS  Google Scholar 

  23. W. Weibull:J. Appl. Mech., 1951, vol. 18, pp. 293–97.

    Article  Google Scholar 

  24. S. Ochiai, K. Osamura, and K. Abe:Z. Metallkunde, 1985, vol. 76, pp. 402–08.

    CAS  Google Scholar 

  25. S. Ochiai and K. Osamura:Z. Metallkunde, 1985, vol. 76, pp. 485–91.

    Google Scholar 

  26. C. Zweben:Eng. Frac. Mech., 1974, vol. 6, pp. 1–10.

    Article  Google Scholar 

  27. S. Ochiai, K. Abe, and K. Osamura:J. Japan Inst. Metals, 1984, vol. 48, pp. 1021–27.

    Article  Google Scholar 

  28. S. Ochiai, K. Abe, and K. Osamura:Z. Metallkunde, 1985, vol. 76, pp. 299–306.

    Google Scholar 

  29. H. W. Herring, J. L. Lytton, and J. H. Steele, Jr.:Metall. Trans., 1973, vol. 4, pp. 807–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochiai, S., Osamura, K. A computer simulation of strength of metal matrix Composites with a Reaction Layer at the Interface. Metall Trans A 18, 673–679 (1987). https://doi.org/10.1007/BF02649483

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649483

Keywords

Navigation