Skip to main content
Log in

Formation mechanism of bainitic ferrite in an Fe-2 Pct Si-0.6 Pct C alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The bainite transformation at 723 K in an Fe-2 pct Si-0.6 pct C alloy (mass pct) was investigated with transmission electron microscopy (TEM) and quantitative metallography to clarify the growth mechanism of the ferritic component of bainite. In early stages of transformation, the bainitic ferrite was carbide free. The laths of bainitic ferrite within a packet were parallel to one another and separated by carbon-enriched retained austenite. The average carbon concentration of the bainitic ferrite was estimated to be 0.19 mass pct at the lowest, indicating that the ferrite was highly supersaturated with respect to carbon. The laths did not thicken during the subsequent isothermal holding, although they were in contact with austenite of which the average carbon concentration was lower than the paraequilibrium value. In the later stage of transformation, large carbide plates formed in the austenite between the laths, resulting in the decrease in the carbon concentration of the austenite. Subsequently, the ferrite with a variant different from the initially formed ferrite in the packet was decomposed for the completion of transformation. The present results indicate that the bainitic ferrite develops by a displacive mechanism rather than a diffusional mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.I. Aaronson:Inst. Met., Monogr., 1969, vol. 33, pp. 270–81.

    Google Scholar 

  2. H.K. Hehemann, K.R. Kinsman, and H.I. Aaronson:Metall. Trans., 1972, vol. 3, pp. 1077–94.

    Article  CAS  Google Scholar 

  3. J.W. Christian and D.V. Edmonds: inInt. Conf. on Phase Transformation in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 293–325.

    Google Scholar 

  4. H.K.D.H. Bhadeshia and J.W. Christian:Metall. Trans. A, 1990, vol. 21A, pp. 767–97.

    CAS  Google Scholar 

  5. H.I. Aaronson, W.T. Reynolds,Jr., G.J. Shiflet, and G. Spanos:Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.

    CAS  Google Scholar 

  6. R.F. Hehemann and A.R. Troiano:Trans. AIME, 1954, vol. 200, pp. 1272–80.

    Google Scholar 

  7. J.M. Oblak and R.F. Hehemann:Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, pp. 15–30.

    Google Scholar 

  8. R. Le Houillier, G. Begin, and A. Dube:Metall. Trans., 1971, vol. 2, pp. 2645–53.

    Google Scholar 

  9. H.K.D.H. Bhadeshia and D.V. Edmonds:Metall. Trans. A, 1979, vol. 10A, pp. 895–907.

    CAS  Google Scholar 

  10. B.P.J. Sandvik:Metall. Trans. A, 1982, vol. 13A, pp. 777–87; 789-800.

    Google Scholar 

  11. U.K. Tsuzaki, C. Nakao, and T. Maki:Mater. Trans. JIM, 1991, vol. 32, pp. 658–66.

    CAS  Google Scholar 

  12. L. Zwell R.C.:quoted by Ruhl and Morris Cohen:Trans. TMS- AIME, 1969, vol. 245, pp. 241–51.

    CAS  Google Scholar 

  13. L. Cheng, A. Bottger, Th.H. de Keijser, and E.J. Mittemeijer:Scripta Metall. Mater., 1990, vol. 24, pp. 509–14.

    Article  CAS  Google Scholar 

  14. H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed:Mater. Sci. Technol., 1991, vol. 7, pp. 686–98.

    CAS  Google Scholar 

  15. W.T. Reynolds Jr., S.K. Liu, F.Z. Li, S. Hartfield, and H.I. Aaronson:Metall. Trans. A, 1990, vol. 21 A, pp. 1479–91.

    Google Scholar 

  16. M. Hillert and L.I. Staffansson:Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    Article  CAS  Google Scholar 

  17. B. Uhrenius: in Hardenability Concepts with Applications to Steel, V.D. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 28-81.

  18. M. Enomoto:Metall. Trans. A, 1989, vol. 20A, pp. 332–33.

    CAS  Google Scholar 

  19. H.K.D.H. Bhadeshia and A.R. Waugh:Acta Metall., 1982, vol. 30, pp. 775–84.

    Article  CAS  Google Scholar 

  20. I. Stark, G.D.W. Smith, and H.K.D.H. Bhadeshia:Int. Conf. on Solid-Solid Phase Transformations, Institute of Metals, London, 1988, pp. 211–15.

    Google Scholar 

  21. B. Josefsson and H.-O. Adren:Mater. Sci. Technol., 1991, vol. 7, pp. 849–51.

    CAS  Google Scholar 

  22. W.T. Reynolds, Jr., S.S. Brenner, and H.I. Aaronson:Scripta Metall., 1988, vol. 22, pp. 1343–48.

    Article  CAS  Google Scholar 

  23. K.W. Andrews:J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  24. S.J. Matas and R.F. Hehemann:Trans. TMS-AIME, 1961, vol. 221, pp. 179–85.

    CAS  Google Scholar 

  25. J.M. Rigsbee and H.I. Aaronson:Acta Metall., 1979, vol. 27, pp. 365–76.

    Article  CAS  Google Scholar 

  26. H.K.D.H. Bhadeshia:Scripta Metall., 1983, vol. 17, pp. 1475–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Kyoto University, Kyoto 606-01, Japan

This article is based on a presentation made at the Pacific Rim Conference on the “Roles of Shear and Diffusion in the Formation of Plate-Shaped Transformation Products,” held December 18-22, 1992, in Kona, Hawaii, under the auspices of ASM INTERNATIONAL’S Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuzaki, K., Kodai, A. & Maki, T. Formation mechanism of bainitic ferrite in an Fe-2 Pct Si-0.6 Pct C alloy. Metall Mater Trans A 25, 2009–2016 (1994). https://doi.org/10.1007/BF02649049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649049

Keywords

Navigation