Skip to main content
Log in

Research on nucleation mechanism of the nanoscale bainite ferrite in a high carbon steel Fe–0.88C–1.35Si–1.03Cr–0.43Mn

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

X-ray diffraction analysis, transmission electron microscopy, and thermodynamic calculation were used to investigate the effect of microstructural condition of austenite on the microstructural characteristics of the nanoscale bainite ferrite in a high carbon steel. As austenization temperature increases to 950 °C, there are a higher vacancy concentration and homogenized distribution level of the interstitial carbon atom in the austenite grains. The movement of more di-vacancies combination could encourage the generation of the γ → α embryo nucleus. The interstitial carbon atoms have a stronger inhibitory effect on the formation of the γ → α embryo nucleus and homogenized distribution of the interstitial carbon atoms are able to make the inhibitory effect exist everywhere in the austenite grains. In consequence, the bainite ferrite could only nucleate in a smaller area (several nanometers), and grow into slender laths in a smaller width and a larger length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: Low temperature bainite. J. Phys. IV 112, 285–288 (2003).

    CAS  Google Scholar 

  2. F.G. Caballero and H.K.D.H. Bhadeshia: Very strong bainite. Curr. Opin. Solid State Mater. Sci. 8, 251–257 (2004).

    Article  CAS  Google Scholar 

  3. C. Garcia-Mateo and H.K.D.H. Bhadeshia: Nucleation theory for high-carbon bainite. Mater. Sci. Eng., A 378, 289–292 (2004).

    Article  Google Scholar 

  4. H.K.D.H. Bhadeshia: The nature, mechanism and properties of strong bainite. In Proceedings of the 1st international symposium on steel science (IS3-2007) (The Iron and Steel Institute of Japan, Japan, 2007).

    Google Scholar 

  5. F.G. Caballelo, M.K. Miller, S.S. Bahu, and C. Garcia-Mateo: Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater. 55, 381–390 (2007).

    Article  Google Scholar 

  6. C.N. Hulme-Smith, I. Lonardelli, A.C. Dippelc, and H.K.D.H. Bhadeshia: Experimental evidence for non-cubic bainite ferrite. Scr. Mater. 69, 409–412 (2013).

    Article  CAS  Google Scholar 

  7. F.G. Caballero, M. Miller, C. Garcia-Mateo, and J. Cornide: New experimental evidence of the diffusionless transformation nature of bainite. J. Alloys Compd. 577, S626–S630 (2013).

    Article  CAS  Google Scholar 

  8. F.G. Caballero, H.-W. Yen, M.K. Miller, H.-T. Chang, C. Garcia-Mateo, and J.-R. Yang: Three phase crystallography and solute distribution analysis during residual austenite decomposition in tempered nanocrystalline bainite steels. Mater. Charact. 88, 15–20 (2014).

    Article  CAS  Google Scholar 

  9. K. Rakha, H. Beladi, I. Timokhina, X.Y. Xiong, S. Kabra, K.D. Liss, and P. Hodgson: On low temperature bainite transformation characteristics using in-situ neutron diffraction and atom probe tomography. Mater. Sci. Eng., A 589, 303–309 (2014).

    Article  CAS  Google Scholar 

  10. S.S. Babu, S. Vogel, C. Garcia-Mateo, B. Clausen, L. Morales-Rivase, and F.G. Caballero: Microstructure evolution during tensile deformation of a nanoscale bainite steel. Scr. Mater. 69, 777–780 (2013).

    Article  CAS  Google Scholar 

  11. W. Gong, Y. Tomota, S. Harjo, Y.H. Sua, and K. Aizawa: Effect of prior martensite on bainite transformation in nanobainite steel. Acta Mater. 85, 243–249 (2015).

    Article  CAS  Google Scholar 

  12. D.Q. Kong, Q.S. Liu, and L.J. Yuan: Effect of austenitizing temperature on formation of hard bainite. Met. Sci. Heat Treat. 56, 444–448 (2014).

    Article  CAS  Google Scholar 

  13. G. Leibfried and N. Breuer: Point defects in metal, Vol. 1, 2 (Springer, Berlin, 1978).

    Google Scholar 

  14. Y.C. Wang: The formation energy of vacancy of metal. Acta Phys. Sin. 15, 469–474 (1995).

    Google Scholar 

  15. E. Kuramoto, K. Ohsawa, and T. Tsutsumi: Computer simulation of defects interacting with a dislocation in Fe and Ni. J. Nucl. Mater. 283–287, 778–783 (2000).

    Article  Google Scholar 

  16. D. Kulikov and M. Hou: A model study of displacement cascades distributions in zirconium. J. Nucl. Mater. 342, 125–134 (2005).

    Article  Google Scholar 

  17. A.G. Croeker, M. Doneghan, and K.W. Ingle: The structure of small vacancy clusters in face-centred-cubic metals. Philos. Mag. A 41, 21 (1980).

    Article  Google Scholar 

  18. R.A. Johnson: Analytic nearest-neighbor model for fcc metals. Phys. Rev. B: Condens. Matter Mater. Phys. 37, 3924–3931 (1988).

    Article  CAS  Google Scholar 

  19. R.A. Johnson: Phase stability of fcc alloys with the embedded-atom method. Phys. Rev. B: Condens. Matter Mater. Phys. 41, 9717–9720 (1999).

    Article  Google Scholar 

  20. F.G. Caballero, M.K. Miller, S.S. Bahu, and C. Garcia-Mateo: Atomic scale observations of bainite transformation in a high carbon high silicon steel. Acta Mater. 55, 381–390 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The study was supported by Tianjin Momentous Technology Supporting Program Foundation of China (No. 11ZCKFGX20500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsuo Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Shen, Y., Wu, Q. et al. Research on nucleation mechanism of the nanoscale bainite ferrite in a high carbon steel Fe–0.88C–1.35Si–1.03Cr–0.43Mn. Journal of Materials Research 31, 1510–1517 (2016). https://doi.org/10.1557/jmr.2016.160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.160

Navigation