Skip to main content
Log in

Adherence-fracture energy of a glass-bonded thick-film conductor: effect of firing conditions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of firing conditions on the adherence of a glass-bonded Pt-Au printed thick film conductor to a 96 wt % Al2O3 substrate was determined by a fracture mechanics measurement of the critical fracture energy for catastrophic thick film-substrate separation. The technique also demonstrated that separation by slow crack growth (delayed failure) occurred in this system. Analysis of the thick film microstructure and fracture surfaces showed that optimum adherence was primarily a result of a mechanically interlocked interface formed between the conductor metal and the glass bonding layer which, in turn, was strongly bonded to the alumina substrate. The two step decrease observed inγ IC (from 3.7 to 0.2 J m−2) with firing temperatures over 860° C resulted from the removal of this interlocking metal-glass interface brought on by metal sintering and glass migration to the substrate. Thus, at 860° C firing temperatures, adherence is controlled by cohesive fracture in the glass bonding phase while above 1000° C it is controlled by adhesive failure of the weak chemical-physical bond at the metal-glass interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Twentyman,J.Mater. Sci. 10 (1975) 765.

    Google Scholar 

  2. G. Elssner, S. Riedel andR. Pabst,Pract. Metall. 12 (1975) 235.

    Google Scholar 

  3. G. Elssner andR. Pabst,Proc. Brit. Ceram. Soc. 25 (1975) 179.

    Google Scholar 

  4. T. T. Hitch, inProceedings of the International Microelectronics Symposium, International Society for Hybrid Microelectronics, Montgomery, Alabama (1971) pp. 7-7.1–4.

    Google Scholar 

  5. B. N. Chapman,J. Vac. Sci. Tech. 11 (1974) 106.

    Google Scholar 

  6. P. F. Becher, W. D. Bascom, J. L. Bitner, andJ. S. Murday, in Proceedings of International Microelectronic Symposium, International Society for Hybrid Microelectronics, Montgomery, Alabama (1975) pp. 079–86.

    Google Scholar 

  7. S. J. Bennett, K. L. Devries, andM. L. Williams,Int. J. Fracture 10 (1974) 33.

    Google Scholar 

  8. E. J. Ripling, S. Mostovoy, andH. T. Corten,J. Adhesion 3 (1971) 107.

    Google Scholar 

  9. E. J. Ripling, S. Mostovoy, andC. Bersch,ibid 3 (1971) 145.

    Google Scholar 

  10. W. D. Bascom, C. O. Timmons, andR. L. Jones,J. Mater. Sci. 10 (1975) 1037.

    Google Scholar 

  11. S. W. Freiman, D. R. Mulville, andP. W. Mast,ibid 8 (1973) 1527.

    Google Scholar 

  12. K. R. Bube andT. T. Hitch, Quarterly Technical Report No. 1, Contract Number N00019-75-C- 0145 (NAVAIR), RCA Laboratories, Princeton, New Jersey, April 1975.

    Google Scholar 

  13. G. J. Copley andA. D. Rivers,J. Mater. Sci. 10 (1975) 1291.

    Google Scholar 

  14. G. J. Copley, A. D. Rivers andR. Smith,ibid 10 (1975) 1285.

    Google Scholar 

  15. S. M. Wiederhorn,J. Amer. Ceram. Soc. 52 (1969) 99.

    Google Scholar 

  16. J. J. Mecholsky, R. W. Rice andS. W. Freiman,ibid 57 (1974) 440.

    Google Scholar 

  17. D. R. Biswas andR. M. Fulrath,ibid 58 (1975) 526.

    Google Scholar 

  18. S. M. Wiederhorn,ibid 58 (1967) 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becher, P.F., Newell, W.L. Adherence-fracture energy of a glass-bonded thick-film conductor: effect of firing conditions. J Mater Sci 12, 90–96 (1977). https://doi.org/10.1007/BF00738474

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738474

Keywords

Navigation