Skip to main content
Log in

Dislocation distribution and prediction of fatigue damage

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The dislocation density and distribution induced by tensile deformation in single crystals of silicon, aluminum and gold and by tension-compression cycling in aluminum single crystals and Al 2024-T3 alloys were studied by X-ray double-crystal diffractometry. The measurements of dislocation density were made at various depths from the surface by removing surface layers incrementally. In this way, a propensity for work hardening in the surface layers compared to the bulk material was demonstrated for both tensiledeformed and fatigue-cycled metals. Analysis of the cycled Al 2024 alloy as a function of the fraction of fatigue life showed that the dislocation density in the surface layer increased rapidly early in the fatigue life and maintained virtually a plateau value from 20 to 90 pct of the life. Beyond 90 pct the dislocation density increased rapidly again to a critical value at failure. Evaluation of the dislocation distribution in depth showed that the excess dislocation density in the bulk material increased more gradually during the life. Using deeply penetrating molybdenumK α radiation, capable of analyzing grains representative of the bulk region, the accrued damage and the onset of fatigue failure could be predicted nondestructively for 2024 Al, cycled with constant stress as well as with variable stress amplitude. The dislocation structure produced in the bulk by prior cycling was unstable when the work-hardened surface layer was removed. It is proposed that the deformation response of the bulk material is controlled by the accumulation of dislocations and associated stresses in the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S. Barrett:Structure of Metals;Crystallographic Methods, Principles and Data, 1st ed., p. 337, McGraw Hill Book Co., New York, 1943.

    Google Scholar 

  2. H. J. Gough and W. A. Wood:Proc. Roy. Soc. (London), 1936, vol. A154, p. 510.

    CAS  Google Scholar 

  3. R. G. Spencer and J. W. Marshall:J. Appl. Phys., 1941, vol. 12, p. 191.

    Article  CAS  Google Scholar 

  4. J. A. Bennett:J. Res. NBS, 1951, vol. 46, p. 457.

    Google Scholar 

  5. S. Taira and K. Hayashi:Bull. JSME, 1966, vol. 9, p. 627.

    CAS  Google Scholar 

  6. S. Taira, T. Goto and Y. Nakano:Proc. 12th Jap. Congr. on Materials Research, p. 8, The Society of Materials Science, Kyoto, 1969.

    Google Scholar 

  7. G. Koves:Microstructural Science, 1976, vol. 4, p. 233.

    CAS  Google Scholar 

  8. M. Nagao and V. Weiss:Trans, ASME, 1977, ser. H, vol. 99, p. 110.

    CAS  Google Scholar 

  9. I. R. Kramer and L. J. Demer:Trans. TMS-AIME, 1961, vol. 221, p. 780.

    CAS  Google Scholar 

  10. I. R. Kramer:Trans. TMS-AIME, 1964, vol. 230, p. 991.

    CAS  Google Scholar 

  11. G. Vellaikal and J. Washburn:J. Appl. Phys., 1969, vol. 40, p. 2280.

    Article  CAS  Google Scholar 

  12. T. Tabata and H. Fujita:J. Phys. Soc. Jap., 1972, vol. 32, p. 1536.

    CAS  Google Scholar 

  13. I. R. Kramer:Proc. Air Force Conf. on Fatigue, 1969, AFFDL-TR-0-144.

  14. I. R. Kramer:Met. Trans., 1974, vol. 5, p. 1735.

    Article  CAS  Google Scholar 

  15. S. Weissmann and D. L. Evans:Acta Cryst., 1954, vol. 7, p. 733.

    Article  CAS  Google Scholar 

  16. S. Weissmann:J. Appl. Phys., 1956, vol. 27, p. 389.

    Article  CAS  Google Scholar 

  17. S. Weissmann:Trans. ASM, 1960, vol. 52, p. 509.

    Google Scholar 

  18. H. P. Klug and L. E. Alexander:X-Ray Diffraction Procedures For Polycrystalline and Amorphous Materials, 2nd ed., p. 661, John Wiley and Sons, New York, 1974.

    Google Scholar 

  19. B. E. Warren and B. L. Averbach:J. Appl. Phys., 1950, vol. 21, p. 595.

    Article  CAS  Google Scholar 

  20. R. Strickler and G. R. Booker: Scientific Paper 63-148-546-P5, Westinghouse Res. Lab., Pittsburgh, PA, 1963.

  21. W. A. Rachinger:J. Sc. Intrum., 1948, vol. 25, p. 254.

    Article  Google Scholar 

  22. P. B. Hirsch:Prog. Met. Phys., 1956, vol. 6, p. 236.

    Article  CAS  Google Scholar 

  23. P. Scherrer:Gött. Nachr., 1918, vol. 2, p. 98.

    Google Scholar 

  24. A. R. Stokes and A. J. C. Wilson:Proc. Phys. Soc. (London), 1944, vol. 56, p. 174.

    Article  CAS  Google Scholar 

  25. J. B. Cohen:Diffraction Methods in Materials Science, p. 315, Macmillan Co., New York, 1966.

    Google Scholar 

  26. H. Alexander:Z. Metallic., 1961, vol. 52, p. 344.

    CAS  Google Scholar 

  27. S. Schäfer:Phys. Stat. Sol., 1967, vol. 19, p. 297.

    Google Scholar 

  28. V. N. Erofeev, V. L. Nikitenko, and V. B. Osvenskii:Phys. Stat. Sol., 1969, vol. 35, p. 79.

    CAS  Google Scholar 

  29. N. Thompson, N. Wadsworth, and N. Louat:Phil. Mag., 1956, vol. 1, p. 113.

    CAS  Google Scholar 

  30. I. R. Kramer and A. Kumar:Met. Trans., 1972, vol. 3, p. 1223.

    Article  CAS  Google Scholar 

  31. S. Taira and K. Hayashi:Proc. 9th Jap. Congr. on Testing Materials, p. 1, The Society of Materials Science, Kyoto, 1966.

    Google Scholar 

  32. S. Taira, K. Tanaka, and T. Tanabe:Proc. 13th Jap. Congr. on Materials Research, p. 14, The Society of Materials Science, Kyoto, 1970.

    Google Scholar 

  33. S. Weissmamn, R. Pangborn, and I. Kramer:Fatigue Mechanisms, p. 163, ASTM STP 675, 1979.

  34. I. R. Kramer:Trans. AIME, 1965, vol. 233, p. 1462.

    CAS  Google Scholar 

  35. G. I. Belykh, G. M. Pyatigorskiî, and E. I. Raîkhel’s:Sov. Phys. Sol. St., 1976, vol. 18, p. 161.

    Google Scholar 

  36. S. Weissmann, R. Yazici, T. Takemoto, T. Tsakalakos and I. R. Kramer: Report #ONR-R-2, Office of Naval Research, Arlington, VA, 1979.

  37. M. Wilkens, K. Herz and H. Mughrabi:Z. Metallkd., 1980, vol. 71, p. 376.

    CAS  Google Scholar 

  38. J. C. Fisher:Trans. AIME, 1956, vol. 194, p. 531.

    Google Scholar 

  39. K. Sumino:J. Phys. Soc. Jap., 1962, vol. 17, p. 454.

    Article  CAS  Google Scholar 

  40. P. A. Rehbinder and E. K. Wenstrom:Byull, Akad. Nauk. URSS, 1937,Classe Sci. Mat. Sea. Phys., p. 531.

  41. I. R. Kramer and S. Podlaseck:Acta Met., 1963, vol. 11, p. 70.

    Article  CAS  Google Scholar 

  42. A. T. Winter:Acta Met., 1980, vol. 28, p. 963.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Associate, Rutgers College of Engineering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pangborn, R.N., Weissmann, S. & Kramer, I.R. Dislocation distribution and prediction of fatigue damage. Metall Trans A 12, 109–120 (1981). https://doi.org/10.1007/BF02648515

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648515

Keywords

Navigation