Skip to main content
Log in

Kissinger-Style Kinetic Analysis for Sintering Dilatometry Data

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of densification during sintering are often analyzed by techniques such as the master sintering curve and Wang–Raj analysis to determine activation energies. These methods, while versatile, do not always form a complete picture or isolate individual processes that occur during sintering. This report develops a densification rate peak method for determining activation energies analogous to the traditional Kissinger analysis for chemical reactions. The difference between using the present analysis and the traditional Kissinger analysis is explored and evaluated for a range of theoretical examples. Finally, three previous sintering reports are re-examined with the new analysis: ThO2-4 pct UO2, Gd and Bi co-doped ceria, and mechanically alloyed W-Cu. The results obtained using the Kissinger-style analysis are in line with MSC and WR analysis where appropriate, and expand the information obtained from densification rate data beyond that of the original reports in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.M. German: Sintering Theory and Practice, Wiley, New York, 1996.

  2. R.W. Balluffi, S. Allen, and W.C. Carter: Kinetics of Materials, Wiley, New York, 2005.

    Book  Google Scholar 

  3. M.F. Ashby: Acta Metall., 1974, vol. 22, pp. 275–89.

    Article  CAS  Google Scholar 

  4. F.B. Swinkels and M.F. Ashby: Acta Metall., 1981, vol. 29, pp. 259–81.

    Article  CAS  Google Scholar 

  5. H. Su and D.L. Johnson: J. Am. Ceram. Soc., 1996, vol. 79, pp. 3211–7.

    Article  CAS  Google Scholar 

  6. J.D. Hansen, R.P. Rusin, M.-H. Teng, and D.L. Johnson: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1129–35.

    Article  CAS  Google Scholar 

  7. D. Blaine, J. Gurosik, S.J. Park, and D. Heaney: Metall. Mater. Trans. A, 2006, vol. 37, pp. 715–20.

    Article  CAS  Google Scholar 

  8. S.J. Park, R.M. German, J.M. Martin, J.F. Guo, and J.L. Johnson: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2837–48.

    Article  CAS  Google Scholar 

  9. S.J. Park, S.H. Chung, J.M. Martín, J.L. Johnson, and R.M. German: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2941–8.

    Article  CAS  Google Scholar 

  10. I.M. Robertson and G.B. Schaffer: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1968–79.

    Article  CAS  Google Scholar 

  11. M. Park, C.A. Schuh: Nat. Commun. (2015). https://doi.org/10.1038/ncomms7858.

    Article  Google Scholar 

  12. M. Park, T. Chookajorn, and C.A. Schuh: Acta Mater., 2018, vol. 145, pp. 123–33.

    Article  CAS  Google Scholar 

  13. M. Park: PhD Thesis, Massachusetts Institute of Technology, 2015.

  14. M.G. Bothara, S.V. Atre, S.-J. Park, R.M. German, T.S. Sudarshan, and R. Radhakrishnan: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3252–61.

    Article  CAS  Google Scholar 

  15. P. Cao, S. Liu, Y. Wu, Y. Xia, Z. Wu, Z. Zhou, Y. Liu, and A. Sun: J. Alloys Compd., 2020, vol. 834, p. 155194.

    Article  CAS  Google Scholar 

  16. T. Frueh, I.O. Ozer, S.F. Poterala, H. Lee, E.R. Kupp, C. Compson, J. Atria, and G.L. Messing: J. Eur. Ceram. Soc., 2018, vol. 38, pp. 1030–7.

    Article  CAS  Google Scholar 

  17. J. Wang and R. Raj: J. Am. Ceram. Soc., 1990, vol. 73, pp. 1172–5.

    Article  CAS  Google Scholar 

  18. J. Wang and R. Raj: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1959–63.

    Article  CAS  Google Scholar 

  19. K. Matsui, N. Ohmichi, M. Ohgai, N. Enomoto, and J. Hojo: J. Am. Ceram. Soc., 2005, vol. 88, pp. 3346–52.

    Article  CAS  Google Scholar 

  20. H. Hofmann, M. Grosskopf, M. Hofmann-Amtenbrink, and G. Petzow: Powder Metall., 1986, vol. 29, pp. 201–6.

    Article  CAS  Google Scholar 

  21. R.M. German: Liquid Phase Sintering, Springer Science & Business Media, New York, 2013.

    Google Scholar 

  22. R.M. German: Metall. Mater. Trans. A, 1997, vol. 28, pp. 1553–67.

    Article  CAS  Google Scholar 

  23. K. Graetz, J.S. Paras, and C.A. Schuh: Materialia, 2018, vol. 1, pp. 89–98.

    Article  Google Scholar 

  24. H.E. Kissinger: Anal. Chem., 1957, vol. 29, pp. 1702–6.

    Article  CAS  Google Scholar 

  25. J.P. Elder: J. Therm. Anal., 1985, vol. 30, pp. 657–69.

    Article  CAS  Google Scholar 

  26. K. Nakajima and R.H.R. Castro: J. Am. Ceram. Soc., 2020, vol. 103, pp. 4903–12.

    Article  CAS  Google Scholar 

  27. K. Nakajima, H. Li, N. Shlesinger, J.B.R. Neto, and R.H.R. Castro: J. Am. Ceram. Soc., 2020, vol. 103, pp. 4167–77.

    Article  CAS  Google Scholar 

  28. J.M. Criado and A. Ortega: J. Non-Cryst. Solids, 1986, vol. 87, pp. 302–11.

    Article  CAS  Google Scholar 

  29. P. Budrugeac and E. Segal: J. Therm. Anal. Calorim., 2007, vol. 88, pp. 703–7.

    Article  CAS  Google Scholar 

  30. F. Julian, Gill, and P.S. Johnson: Analytical Calorimetry: Volume 5, Springer US, 1984.

  31. R.H.R. Castro, R.B. Torres, G.J. Pereira, and D. Gouvea: Chem. Mater., 2010, vol. 22, pp. 2502–9.

    Article  CAS  Google Scholar 

  32. N.K. Roy, C.S. Foong, and M.A. Cullinan: Addit. Manuf., 2018, vol. 21, pp. 17–29.

    CAS  Google Scholar 

  33. S. Banerjee and A.K. Tyagi: Functional Materials - Preparation, Processing and Applications, Elsevier, Amsterdam (2012).

    Google Scholar 

  34. S.F. Corbin and D. Cluff: J. Alloys Compd., 2009, vol. 487, pp. 179–86.

    Article  CAS  Google Scholar 

  35. G. Hao, Y. Li, X. Wang, W. Wang, X. Wang, and D. Wang: Mater. Res. Express, 2020, vol. 7, p. 116515.

    Article  CAS  Google Scholar 

  36. A. Karamanov, S. Ergul, M. Akyildiz, and M. Pelino: J. Non-Cryst. Solids, 2008, vol. 354, pp. 290–5.

    Article  CAS  Google Scholar 

  37. L.D. Silva, A.M. Rodrigues, A.C.M. Rodrigues, M.J. Pascual, A. Durán, and A.A. Cabral: J. Non-Cryst. Solids, 2017, vol. 473, pp. 33–40.

    Article  CAS  Google Scholar 

  38. C. Menapace, P. Costa, and A. Molinari: in European Congress and Exhibition on Powder Metallurgy. European PM Conference Proceedings, vol. 2, The European Powder Metallurgy Association, Shrewsbury, United Kingdom, 2004, pp. 1–6.

  39. C. Padmavathi and A. Upadhyaya: Sci. Sinter., 2010, vol. 42, pp. 363–82.

    Article  CAS  Google Scholar 

  40. M. Vattur-Sundaram, K.B. Surreddi, E. Hryha, A. Veiga, S. Berg, F. Castro, and L. Nyborg: Metall. Mater. Trans. A, 2018, vol. 49, pp. 255–63.

    Article  CAS  Google Scholar 

  41. D. Li, S. Chen, D. Wang, Y. Li, W. Shao, Y. Long, Z. Liu, and S.P. Ringer: Ceram. Int., 2010, vol. 36, pp. 827–9.

    Article  CAS  Google Scholar 

  42. B.R. Seidel and D. Johnson: Phys. Sinter, 1971, vol. 3, pp. 143–56.

    CAS  Google Scholar 

  43. P.H. Shingu.

  44. A.K. Burnham: Chem. Eng. J., 2005, vol. 108, pp. 47–50.

    Article  CAS  Google Scholar 

  45. S. Raynaud, E. Champion, and D. Bernache-Assollant: Biomaterials, 2002, vol. 23, pp. 1073–80.

    Article  CAS  Google Scholar 

  46. E. Ruckenstein and B. Pulvermacher: AIChE J., 1973, vol. 19, pp. 356–64.

    Article  CAS  Google Scholar 

  47. R.M. German and Z.A. Munir: in Sintering and Catalysis, G.C. Kuczynski, ed., Springer US, Boston, MA, 1975, pp. 249–57.

  48. D. Xie, L. Wan, D. Song, S. Wang, F. Lin, X. Pan, and J. Xu: Mater. Des., 2015, vol. 87, pp. 482–7.

    Article  CAS  Google Scholar 

  49. K. Saitou: Scr. Mater., 2006, vol. 54, pp. 875–9.

    Article  CAS  Google Scholar 

  50. D. Demirskyi, D. Agrawal, and A. Ragulya: J. Alloys Compd., 2011, vol. 509, pp. 1790–5.

    Article  CAS  Google Scholar 

  51. T. Ondro, O. Al-Shantir, Š. Csáki, F. Lukáč, and A. Trník: Thermochim. Acta, 2019, vol. 678, p. 178312.

    Article  CAS  Google Scholar 

  52. P. Ptáček, M. Křečková, F. Šoukal, T. Opravil, J. Havlica, and J. Brandštetr: Powder Technol., 2012, vol. 232, pp. 24–30.

    Article  CAS  Google Scholar 

  53. A. Shokry, S. Gowid, G. Kharmanda, and E. Mahdi: Materials, 2019, vol. 12, p. 2873.

    Article  CAS  Google Scholar 

  54. J. Banerjee, T.R.G. Kutty, A. Kumar, H.S. Kamath, and S. Banerjee: J. Nucl. Mater., 2011, vol. 408, pp. 224–30.

    Article  CAS  Google Scholar 

  55. J. Banerjee, A. Ray, A. Kumar, and S. Banerjee: J. Nucl. Mater., 2013, vol. 443, pp. 467–78.

    Article  CAS  Google Scholar 

  56. A. Ray, J. Banerjee, T.R.G. Kutty, A. Kumar, and S. Banerjee: Sci. Sinter., https://doi.org/10.2298/sos1202147r.

  57. L. Guan, S. Le, X. Zhu, S. He, and K. Sun: J. Eur. Ceram. Soc., 2015, vol. 35, pp. 2815–21.

    Article  CAS  Google Scholar 

  58. V. Gil, J. Tartaj, C. Moure, and P. Durán: J. Eur. Ceram. Soc., 2006, vol. 26, pp. 3161–71.

    Article  CAS  Google Scholar 

  59. S.S. Ryu, Y.D. Kim, and I.H. Moon: J. Alloys Compd., 2002, vol. 335, pp. 233–40.

    Article  CAS  Google Scholar 

  60. J.-C. Kim and I.-H. Moon: Nanostructured Mater., 1998, vol. 10, pp. 283–90.

    Article  CAS  Google Scholar 

  61. M.H. Maneshian and A. Simchi: J. Alloys Compd., 2008, vol. 463, pp. 153–9.

    Article  CAS  Google Scholar 

  62. A. Kuper, H. Letaw, L. Slifkin, E. Sonder, and C.T. Tomizuka: Phys. Rev., 1954, vol. 96, pp. 1224–5.

    Article  CAS  Google Scholar 

  63. G.C. Kuczynski: in Sintering Key Papers, S. Sōmiya and Y. Moriyoshi, eds., Springer Netherlands, Dordrecht, 1990, pp. 509–27.

  64. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book (8th Edition). Elsevier, Amsterdam (2004).

    Google Scholar 

  65. J.L. Johnson and R.M. German: Metall. Mater. Trans. B, 1996, vol. 27, pp. 901–9.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Aeronautics and Space Administration under grants No. 80NSSC19K1055 and 029856-00001.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Schuh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 20, 2021; accepted July 12, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver, C., Schuh, C.A. Kissinger-Style Kinetic Analysis for Sintering Dilatometry Data. Metall Mater Trans A 52, 4479–4487 (2021). https://doi.org/10.1007/s11661-021-06399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06399-y

Navigation