Skip to main content
Log in

The Correlation Between Bending, Tensile and Charpy Impact Properties of Ultra-high-Strength Strip Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two different ultra-high-strength B-containing steel strips, one treated with Ti and the other treated with Al, processed by controlled rolling, accelerated cooling, and coiling in two different temperatures ranges (450 °C to 460 °C and 360 °C to 380 °C) were subjected to tensile testing, bend testing, and Charpy impact testing. The relatively softer and homogeneous microstructure containing mostly granular bainite and upper bainite at the subsurface region (300 to 400 μm depth below the surface), with a low intensity of BCC shear texture components (e.g., {112}〈111〉), generated at the higher coiling temperatures (450 °C to 460 °C), is preferred for bendability (more resistant to shear cracking during bending) and also for the impact upper shelf energy (USE). The hard surface layer dominated by martensite developed at lower coiling temperatures (360 °C to 380 °C) promoted cleavage cracking and is therefore, undesired for bendability and impact toughness. The impact toughness at − 40 °C improved with the intensification of high angle boundaries, refinement of effective grain size, and the reduction of detrimental ‘rotated cube’ texture component. Finally, as the different properties are correlated, a decrease in yield strength, increase in ductility (particularly post-uniform elongation) and tensile toughness are found to be beneficial for bendability and USE. It can be concluded that a higher coiling temperature is preferred to achieve a softer bainitic microstructure if improved bendability and toughness are required rather than higher tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. K. Yamazaki, M. Oka, H. Yasuda, Y. Mizuyama, and H. Tsuchiya: Nippon Steel Tech. Rep., 1995.

  2. S. Matsuoka, K. Hasegawa, and Y. Tanaka: JFE Tech. Rep., 2007, vol. 10, pp. 13–18.

    Google Scholar 

  3. Y.B. Xu, Y.L. Bai, Q. Xue, and L.T. Shen: Acta Mater., 1996, vol. 44, pp. 1917–26.

    Article  CAS  Google Scholar 

  4. M. Kaupper and M. Merklein: CIRP Ann., 2013, vol. 62, pp. 247–50.

    Article  Google Scholar 

  5. J. Xue, Z. Zhao, C. Bin, X. Liu, H. Wu, H. Li, and W. Xiong: Mater. Res. Express, 2019, vol. 6, p. 0965c8.

    Article  CAS  Google Scholar 

  6. S.-J. Kim, C.G. Lee, T.-H. Lee, and S. Lee: ISIJ Int., 2000, vol. 40, pp. 692–98.

    Article  CAS  Google Scholar 

  7. L. Xu, H. Wu, and Q. Tang: ISIJ Int., 2018, vol. 58, pp. 1086–93.

    Article  CAS  Google Scholar 

  8. M. Sun, Y. Xu, and W. Du: Metals, 2020, vol. 10, p. 1173.

    Article  CAS  Google Scholar 

  9. A. Mandal, A. Karmakar, D. Chakrabarti, and C. Davis: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 6359–74.

    Article  Google Scholar 

  10. R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.

    Article  CAS  Google Scholar 

  11. F.G. Caballero, J. Chao, J. Cornide, C. García-Mateo, M.J. Santofimia, and C. Capdevila: Mater. Sci. Eng. A, 2009, vol. 525, pp. 87–95.

    Article  Google Scholar 

  12. J. Kobayashi, D. Ina, A. Futamura, and K. Sugimoto: ISIJ Int., 2014, vol. 54, pp. 955–62.

    Article  CAS  Google Scholar 

  13. Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu: J. Mater. Sci. Technol., 2018, vol. 34, pp. 737–44.

    Article  Google Scholar 

  14. J.-B. Seol, D. Raabe, P.-P. Choi, Y.-R. Im, and C.-G. Park: Acta Mater., 2012, vol. 60, pp. 6183–99.

    Article  CAS  Google Scholar 

  15. A.K. Lis: J. Mater. Process. Technol., 2000, vol. 106, pp. 212–18.

    Article  Google Scholar 

  16. S.G.J.H. Nathani, D.K. Misra, and J. Hartmann: Mater. Sci. Technol., 2004, vol. 3, pp. 1–5.

    Google Scholar 

  17. K.-I. Sugimoto: Mater. Sci. Technol., 2009, vol. 25, pp. 1108–17.

    Article  CAS  Google Scholar 

  18. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 341–55.

    Article  CAS  Google Scholar 

  19. A. Zare and A. Ekrami: J. Mater. Eng. Perform., 2013, vol. 22, pp. 823–29.

    Article  CAS  Google Scholar 

  20. A. Mandal, A. Ghosh, D. Chakrabarti, and C. Davis: Mater. Sci. Eng. A, 2021, vol. 824, 141796.

    Article  CAS  Google Scholar 

  21. P. Xia, F. Vercruysse, C. Celada-Casero, P. Verleysen, R.H. Petrov, I. Sabirov, J.M. Molina-Aldareguia, A. Smith, B. Linke, R. Thiessen, D. Frometa, S. Parareda, and A. Lara: Mater. Sci. Eng. A, 2022, vol. 831, 142217.

    Article  CAS  Google Scholar 

  22. H. Lan, S. Tang, L. Du, J. Li, and S. van der Zwaag: ISIJ Int., 2021, vol. 61, pp. 1650–59.

    Article  CAS  Google Scholar 

  23. A.J. Kaijalainen, P. Suikkanen, L.P. Karjalainen, and J.J. Jonas: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1273–83.

    Article  Google Scholar 

  24. T. Taylor: Mater. Sci. Technol., 2016, vol. 32, pp. 1730–41.

    Article  CAS  Google Scholar 

  25. A.J. Kaijalainen, M. Liimatainen, V. Kesti, J. Heikkala, T. Liimatainen, and D.A. Porter: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 4175–88.

    Article  Google Scholar 

  26. A.J. Kaijalainen, P.P. Suikkanen, L.P. Karjalainen, and D.A. Porter: Mater. Sci. Eng. A, 2016, vol. 654, pp. 151–60.

    Article  CAS  Google Scholar 

  27. J. Lämsä, A. Väisänen, J. Heikkala, and A. Järvenpää: Key Eng. Mater., 2013, vol. 554–557, pp. 12–20.

    Article  Google Scholar 

  28. ASTM E8: ASTM Stand. ASTM Int. Pennsylvania, 2021, vol. i, pp. 1–27.

  29. ASTM E290: ASTM Stand. ASTM Int. Pennsylvania, 2014, vol. 03, pp. 1–7.

  30. J. Sarkar, T.R. Kutty, D. Wilkinson, J. Embury, and D. Lloyd: Mater. Sci. Eng. A, 2004, vol. 369, pp. 258–66.

    Article  Google Scholar 

  31. ASTM E23: ASTM Stand. ASTM Int. Pennsylvania, 2018, pp. 1–25.

  32. Y. Sakai, K. Tamanoi, and N. Ogura: Nucl. Eng. Des., 1989, vol. 115, pp. 31–39.

    Article  CAS  Google Scholar 

  33. B. Hutchinson, T. Siwecki, J. Komenda, J. Hagström, R. Lagneborg, J.-E. Hedin, and M. Gladh: Ironmak. Steelmak., 2014, vol. 41, pp. 1–6.

    Article  CAS  Google Scholar 

  34. J. Datsko and C.T. Yang: J. Eng. Ind., 1960, vol. 82, pp. 309–13.

    Article  Google Scholar 

  35. M. Dao and M. Li: Philos. Mag. A, 2001, vol. 81, pp. 1997–2020.

    Article  CAS  Google Scholar 

  36. W. Muhammad, J. Kang, A.P. Brahme, U. Ali, J. Hirsch, H.-J. Brinkman, O. Engler, R.K. Mishra, and K. Inal: Mater. Sci. Eng. A, 2019, vol. 753, pp. 179–91.

    Article  CAS  Google Scholar 

  37. V. Javaheri, S. Pallaspuro, A. Kaijalainen, S. Sadeghpour, J. Kömi, and D. Porter: Mater. Sci. Eng. A, 2020, vol. 796, 140011.

    Article  CAS  Google Scholar 

  38. BS EN 10149-2:2013: Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming Part 1: General Technical Delivery Conditions, BSI, 2013.

  39. H.K.D.H. Bhadeshia: Bainite in Steels, 3rd ed. CRC Press, Boca Raton, 2019.

    Book  Google Scholar 

  40. R.K. Ray, J.J. Jonas, and R.E. Hook: Int. Mater. Rev., 1994, vol. 39, pp. 129–72.

    Article  CAS  Google Scholar 

  41. R.K. Ray and J.J. Jonas: Int. Mater. Rev., 1990, vol. 35, pp. 1–36.

    Article  Google Scholar 

  42. N.J. Wittridge and J.J. Jonas: Acta Mater., 2000, vol. 48, pp. 2737–49.

    Article  CAS  Google Scholar 

  43. A. Saastamoinen, A. Kaijalainen, J. Heikkala, D. Porter, and P. Suikkanen: Mater. Sci. Eng. A, 2018, vol. 730, pp. 284–94.

    Article  CAS  Google Scholar 

  44. A. Saastamoinen, A. Kaijalainen, D. Porter, and P. Suikkanen: Mater. Charact., 2017, vol. 134, pp. 172–81.

    Article  CAS  Google Scholar 

  45. W.F. Hosford: Mechanical Behavior of Materials, 2nd ed. Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  46. C.N. Reid: Deformation Geometry for Materials Scientists, Pergamon Press, Oxford, 1973.

    Google Scholar 

  47. R.J. Asaro: Acta Metall., 1979, vol. 27, pp. 445–53.

    Article  CAS  Google Scholar 

  48. C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan, and J.W. Morris: Acta Mater., 2014, vol. 69, pp. 372–85.

    Article  CAS  Google Scholar 

  49. C.C. Kinney, I. Yi, K.R. Pytlewski, A.G. Khachaturyan, N.J. Kim, and J.W. Morris: Acta Mater., 2017, vol. 125, pp. 442–54.

    Article  CAS  Google Scholar 

  50. A. Chatterjee, A. Ghosh, A. Moitra, A.K. Bhaduri, R. Mitra, and D. Chakrabarti: Int. J. Plast., 2018, vol. 104, pp. 104–33.

    Article  CAS  Google Scholar 

  51. M. Tsuboi, A. Shibata, D. Terada, and N. Tsuji: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3261–68.

    Article  Google Scholar 

  52. N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387–96.

    Article  CAS  Google Scholar 

  53. T. Furuhara, H. Kawata, S. Morito, and T. Maki: Mater. Sci. Eng. A, 2006, vol. 431, pp. 228–36.

    Article  Google Scholar 

  54. Z. Guo, C.S. Lee, and J.W. Morris: Acta Mater., 2004, vol. 52, pp. 5511–18.

    Article  CAS  Google Scholar 

  55. A. Ghosh, S. Kundu, and D. Chakrabarti: Scr. Mater., 2014, vol. 81, pp. 8–11.

    Article  CAS  Google Scholar 

  56. T. Hanamura, F. Yin, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610–17.

    Article  CAS  Google Scholar 

  57. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri: Mater. Sci. Eng. A, 2015, vol. 630, pp. 58–70.

    Article  CAS  Google Scholar 

  58. D. Bhattacharjee, J.F. Knott, and C.L. Davis: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 121–30.

    Article  CAS  Google Scholar 

  59. X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian: Mater. Sci. Eng. A, 2017, vol. 704, pp. 448–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Tata Steel Europe for providing the Research Material and sharing industrial information of the subject; research facilities developed at IIT Kharagpur through Institute SGDRI 2015 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debalay Chakrabarti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figures A1 and A2.

Fig. A1
figure 20

SEM fractographs of broken Charpy specimens impact tested at USE region (+ 70 °C): (a to d) lower magnification images showing the entire fracture surface; (e to h) higher magnification images showing the fine equiaxed dimples (white arrow), coarse elongated dimples (blue arrow) and cleavage fracture regions (red arrow). The rolling direction (RD), i.e., the crack propagation direction is indicated by double-headed red arrow. Figures reprinted from Ref. [20] with permission (Color figure online)

Fig. A2
figure 21

SEM fractographs of broken Charpy specimens impact tested at − 40 °C: (a to d) lower magnification images showing the entire fracture surface; (e to h) higher magnification images showing the ductile dimples (white arrow) and cleavage fracture regions (red arrow). The rolling direction (RD), i.e., the crack propagation direction is indicated by double-headed red arrow (Color figure online)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A., Barik, R.K., Bhattacharya, A. et al. The Correlation Between Bending, Tensile and Charpy Impact Properties of Ultra-high-Strength Strip Steels. Metall Mater Trans A 54, 3820–3843 (2023). https://doi.org/10.1007/s11661-023-07134-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07134-5

Navigation