Skip to main content
Log in

The role of sulfur in the air embrittlement of nickel and its alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A mechanism leading to the embrittlement of nickel and its alloys following high temperature air exposure is proposed. This mechanism involves the internal oxidation of sulfides to oxides, accompanied by a release of embrittling sulfur onto the grain boundaries. The mechanism is shown to work in a model system of nickel containing MnS precipitates, in which a ring of internal oxidation 250 µm in depth forms during 200 hours air exposure at 1000 °C. Auger analysis shows very high sulfur levels on grain boundaries within this region, but also reveals considerable sulfur concentrations beyond it. This massive release of free sulfur had the effect of rendering the alloy brittle over the entire temperature range investigated (25 to 1000 °C). The contribution of this mechanism to the known air embrittlement of pure nickel (Ni270) and a nickel base superalloy (IN738) is investigated. Although enhanced O/Ni peak height ratios were observed in the air exposed samples of both materials, the only significant sulfur concentrations were observed on the surfaces of grain boundary cavities formed in Ni270. However, the starting sulfur levels were extremely low in both cases, and the mechanism may contribute to high temperature air embrittlement in other systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Merica and R. G. Waltenberg:Trans. AIME, 1925, vol. 71, pp. 709–19.

    Google Scholar 

  2. K. M. Olsen, C. F. Larkin, and P. N. Schmitt:Trans. ASM, 1961, vol. 53, pp. 349–58.

    CAS  Google Scholar 

  3. D. A. Kraai and S. Floreen:Trans. TMS-AIME, 1964, vol. 230, pp. 833–36.

    CAS  Google Scholar 

  4. M. Lozinsky, G. M. Volkogon, and N. Z. Pertsovsky:Russian Metallurgy, 1967, vol. 5, pp. 65–72.

    Google Scholar 

  5. S. Floreen and J. H. Westbrook:Acta Met., 1969, vol. 17, pp. 1175–81.

    Article  CAS  Google Scholar 

  6. C. Loier and J-Y. Boos:Metall. Trans. A, 1981, vol. 12A, pp. 1223–33.

    Google Scholar 

  7. T. Fleitmann:Ber. d. Deutsch Gesell., 1879, vol. 12, p. 454.

    Google Scholar 

  8. G. A. Boeddicker:Wagner's Jahreskerichte, 1881, vol. 27, p. 69.

    Google Scholar 

  9. R. H. Bricknell and D. A. Woodford:Metall. Trans. A, 1981, vol. 12A, pp. 425–33.

    Google Scholar 

  10. W. H. Chang: Superalloys-Processing,Proc. 2nd Int. Conf. on Superalloys, Section V, MCIC-72-10, 1972.

  11. D. A. Woodford:Metall. Trans. A, 1981, vol. 12A, pp. 299–308.

    Google Scholar 

  12. D. A. Woodford and R. H. Bricknell:Proc. 4th Int. Conf. on Super-alloys, ASM, Metals Park, OH, 1980, pp. 633–41.

    Google Scholar 

  13. D. A. Woodford and R. H. Bricknell:Metall. Trans. A, 1981, vol. 12A, pp. 1467–75.

    Google Scholar 

  14. R. H. Bricknell and D. A. Woodford:Acta Met., 1982, vol. 30, pp. 257–64.

    Article  CAS  Google Scholar 

  15. J. J. Burton, B. J. Berkowitz, and R. D. Kane:Metall. Trans. A, 1979, vol. 10A, pp. 677–82.

    CAS  Google Scholar 

  16. C. L. Briant and R. A. Mulford:Metall. Trans. A, 1982, vol. 13A, pp. 745–52.

    Google Scholar 

  17. R. Barlow and P. J. Grundy:J. Mat. Sci., 1969, vol. 4, pp. 797–801.

    Article  CAS  Google Scholar 

  18. A. Barlow, P. J. Grundy, and B. Johnson:J. Mat. Sci., 1969, vol. 4, pp. 359–69.

    Article  CAS  Google Scholar 

  19. J. H. Wood: General Electric Company, Schenectady, NY, unpublished research, 1973.

  20. A. U. Seybolt:Trans. TMS-AIME, 1968, vol. 242, pp. 1955–61.

    Google Scholar 

  21. H. Chaung: Ph. D. Thesis, Ohio University, Dayton, OH, University Microfilms International, Ann Arbor, MI, 1976.

    Google Scholar 

  22. C. L. White, R. A. Padgett, and R. W. Swindeman:Scripta Metallurgica, 1981, vol. 15, pp. 777–82.

    Article  CAS  Google Scholar 

  23. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, and R. E. Weber: “Handbook of Auger Electron Spectroscopy”, 2nd edition, Physical Electronics Industries, Eden Prairie, MN, 1976.

    Google Scholar 

  24. R. A. Mulford: accepted forMetall. Trans. A.

Download references

Author information

Authors and Affiliations

Authors

Additional information

R.A. MULFORD, formerly with the General Electric Corporate Research and Development Laboratory, Schenectady

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bricknell, R.H., Mulford, R.A. & Woodford, D.A. The role of sulfur in the air embrittlement of nickel and its alloys. Metall Trans A 13, 1223–1232 (1982). https://doi.org/10.1007/BF02645505

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645505

Keywords

Navigation