Skip to main content
Log in

Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The role of microstructure and environment in influencing ultra-low fatigue crack propagation rates has been investigated in 7075 aluminum alloy heat-treated to underaged, peak-aged, and overaged conditions and tested over a range of load ratios. Threshold stress intensity range, ΔK0, values were found to decrease monotonically with increasing load ratio for all three heat treatments fatigue tested in 95 pct relative humidity air, with ΔK 0 decreasing at all load ratios with increased extent of aging. Comparison of the near-threshold fatigue behavior obtained in humid air with the data forvacuo, however, showed that the presence of moisture leads to a larger reduction in ΔK0 for the underaged microstructure than the overaged condition, at all load ratios. An examination of the nature of crack morphology and scanning Auger/SIMS analyses of near-threshold fracture surfaces revealed that although the crack path in the underaged structure was highly serrated and nonlinear, crack face oxidation products were much thicker in the overaged condition. The apparent differences in slow fatigue crack growth resistance of the three aging conditions are ascribed to a complex interaction among three mechanisms: the embrittling effect of moisture resulting in conventional corrosion fatigue processes, the role of microstructure and slip mode in inducing crack deflection, and crack closure arising from a combination of environmental and microstructural contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.G. Garrett and J.F. Knott:Acta Metall, 1975, vol. 23, p. 841.

    Article  CAS  Google Scholar 

  2. B.R. Kirby and C.J. Beevers:Fat. Eng. Mater. Struct., 1979, vol. 1, p. 203.

    Article  CAS  Google Scholar 

  3. G. R. Yoder, L. A. Cooley, and T. W. Crooker:Scripta Met., 1982, vol. 16, p. 1021.

    Article  Google Scholar 

  4. J. McKittrick, P.K. Liaw, S.I. Kwun, and M.E. Fine:Metall. Trans. A, 1981, vol. 12A, p. 1535.

    Google Scholar 

  5. A.K. Vasudévan and S. Suresh:Metall. Trans. A, 1982, vol. 13A, p. 2271.

    Google Scholar 

  6. K. J. Nix and H. M. Flowers:Acta Metall., 1982, vol. 30, p. 1549.

    Article  Google Scholar 

  7. J. Petit and A. Zeghloul: inFatigue Thresholds, J. Bäcklund, A. Blom, and C. J. Beevers, eds., EMAS Ltd., Warley, U.K., 1982, p. 563.

    Google Scholar 

  8. E. Hornbogen and K. H. Zum Gahr:Acta Metall., 1976, vol. 24, p. 581.

    Article  CAS  Google Scholar 

  9. J. Lindgkeit, A. Gysier, and G. Lütjering:Metall. Trans. A, 1981, vol. 12A, p. 1613.

    Google Scholar 

  10. R. D. Carter, E. W. Lee, C. J. Beevers, and E. A. Starke, Jr.:Metall. Trans. A, 1984, vol. 15A, in press.

  11. M. C. Lafarie-Frenot and C. Gasc:Fat. Eng. Mater. Struct., 1983, in press.

  12. J. A. Feeney, J. C. McMillan, and R. P. Wei:Metall. Trans., 1970, vol. 1, p. 1741.

    CAS  Google Scholar 

  13. A.K. Vasudévan and S. Suresh: unpublished results, Alcoa, Pittsburgh, PA, 1983.

  14. A. Hartman:Int. J. Fract. Mech., 1965, vol. 1, p. 167.

    CAS  Google Scholar 

  15. F. J. Bradshaw and C. Wheeler:Int. J. Fract. Mech., 1969, vol. 5, p. 255.

    Google Scholar 

  16. R.P. Wei:Eng. Fract. Mech., 1970, vol. 1, p. 633.

    Article  CAS  Google Scholar 

  17. R.J. Selines and R.M.N. Pelloux:Metall. Trans., 1972, vol. 3, p. 2525.

    CAS  Google Scholar 

  18. F. S. Lin and E. A. Starke, Jr.: inHydrogen in Metals, A.W. Thompson and I. M. Bernstein, eds., TMS-AIME, Warrendale, PA, 1981, p. 485.

    Google Scholar 

  19. S. Suresh, I. G. Palmer, and R. E. Lewis:Fat. Eng. Mater. Struct., 1982, vol. 5, p. 133.

    Article  CAS  Google Scholar 

  20. R. A. Schmidt and P. C. Paris: inProgress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, 1973, p. 79.

  21. R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir, and G.W. Simmons:Metall. Trans. A, 1980, vol. 11A, p. 151.

    CAS  Google Scholar 

  22. L. Christodoulou and H. M. Flower:Acta Metall., 1982, vol. 28, p. 481.

    Google Scholar 

  23. W. Elber: inDamage Tolerance in Aircraft Structures, ASTM STP 486, 1971, p. 280.

  24. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, p. 1435.

    Google Scholar 

  25. S. Suresh:Metall. Trans. A, 1983, vol. 14A, p. 2375.

    Google Scholar 

  26. K. Minakawa and A.J. McEvily:Scripta Met., 1981, vol. 15, p. 633.

    Article  Google Scholar 

  27. S. Suresh and R.O. Ritchie:Metall. Trans. A, 1982, vol. 13A, p. 1627.

    Google Scholar 

  28. G. T. Gray, III, A. W. Thompson, and J. C. Williams:Metall. Trans. A, 1983, vol. 14A, p. 421.

    Google Scholar 

  29. M.O. Speidel:Proceedings of NATO Conference, Brussels, 1971, p. 289.

  30. M.O. Speidel: Ohio State University Report, 1975.

  31. F. S. Lin and E.A. Starke, Jr.:Mater. Sci. Eng., 1980, vol. 43, p. 65.

    Article  CAS  Google Scholar 

  32. W. W. Gerberich, W. Yu, and K. Esaklul:Metall. Trans. A, 1984, vol. 15A, in press.

  33. D. J. Duquette:Corrosion Fatigue, Proceedings of AGARD Conference #316, Turkey, 1981, in press.

  34. S. Suresh and A. K. Vasudévan: inConcepts of Fatigue Crack Growth Thresholds, proceedings of AIME Symposium, October 1983, Philadelphia, PA, D. L. Davidson and S. Suresh, eds., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, S., Vasudévan, A.K. & Bretz, P.E. Mechanisms of Slow Fatigue Crack Growth in High Strength Aluminum Alloys: Role of Microstructure and Environment. Metall Trans A 15, 369–379 (1984). https://doi.org/10.1007/BF02645122

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645122

Keywords

Navigation