Skip to main content
Log in

Effect of Overaging on Fatigue Crack Propagation and Stress Corrosion Cracking Behaviors of an Al-Zn-Mg-Cu Alloy Thick Plate

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The fatigue property as well as stress corrosion cracking (SCC) resistance of an Al-Zn-Mg-Cu alloy thick plate in peak-aged and overaged tempers (T7351 and T7651) is systematically investigated by fatigue crack propagation (FCP) test and slow strain rate test (SSRT). Microstructural characterization is examined by transmission electron microscopy and scanning electron microscopy. Results reveal that the T7351 alloy has lower strength but higher electrical conductivity as compared to T7651 alloy. The FCP resistance of T7351 alloy is superior to that of the T7651 alloy due to the coarser precipitates in the highly overaged alloy in which the strain localization is reduced by promoting homogeneous slip. In addition, the SSRT test suggests a higher SCC resistance in T7351 alloy. The enhanced SCC resistance is found to depend on grain boundary precipitate characteristics and crack propagation resistance of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Yang, Z. Liu, P. Ying, J. Li, L. Lin, and S. Zeng, Multistage-Aging Process Effect on Formation of GP Zones and Mechanical Properties in Al-Zn-Mg-Cu alloy, Trans. Nonferrous Metals Soc, 2016, 26, p 1183–1190

    Article  Google Scholar 

  2. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knustson-Wedel, G. Wateerloo, D. Schryvers, and L.R. Wallenberg, GP-Zones in Al-Zn-Mg Alloys and Their Role in Artificial Aging, Acta Mater., 2001, 49, p 3443–3451

    Article  Google Scholar 

  3. J. Buha, R.N. Lumley, and A.G. Crosky, Secondary Ageing in an Aluminium Alloy 7050, Mater. Sci. Eng. A, 2008, 492, p 1–10

    Article  Google Scholar 

  4. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155

    Article  Google Scholar 

  5. H.B. Larsen, G. Thorkildsen, S. Natland, and P. Pattison, Average Crystal Structure(s) of the Embedded Meta Stable η′-Phase in the Al-Mg-Zn system, Philos. Mag., 2014, 94, p 1719–1743

    Article  Google Scholar 

  6. J. Chen, L. Zhen, S. Yang, W. Shao, and S. Dai, Investigation of Precipitation Behavior and Related Hardening in AA 7055 Aluminum Alloy, Mater. Sci. Eng. A, 2009, 500, p 34–42

    Article  Google Scholar 

  7. L. Lin, Z. Liu, S. Bai, P. Ying, and X. Wang, Effects of Germanium on Quench Sensitivity in Al-Zn-Mg-Zr Alloy, Mater. Des., 2015, 86, p 679–685

    Article  Google Scholar 

  8. L. Lin, Z. Liu, Y. Li, X. Han, and X. Chen, Effects of Severe Cold Rolling on Exfoliation Corrosion Behavior of Al-Zn-Mg-Cu-Cr Alloy, J. Mater. Eng. Perform., 2012, 21, p 1070–1075

    Article  Google Scholar 

  9. M.A. Krishnan and V.S. Raja, Development of High Strength AA 7010 Aluminum Alloy Resistant to Environmentally Assisted Cracking, Corros. Sci., 2016, 109, p 94–100

    Article  Google Scholar 

  10. M. Talianker and B. Cina, Retrogression and Reaging and the Role of Dislocations in the Stress Corrosion of 7000-Type Aluminum Alloys, Metall. Mater. Trans. A, 1989, 20, p 2087–2092

    Article  Google Scholar 

  11. R. Goswami, S. Lynch, N.J.H. Holroyd, S.P. Knight, and R.L. Holtz, Evolution of Grain Boundary Precipitates in Al 7075 Upon Aging and Correlation with Stress Corrosion Cracking Behavior, Metall. Mater. Trans. A, 2013, 44, p 1268–1278

    Article  Google Scholar 

  12. S.P. Knight, K. Pohl, N.J.H. Holroyd, N. Birbilis, P.A. Rometsch, B.C. Muddle, R. Goswami, and S.P. Lynch, Some Effects of Alloy Composition on Stress Corrosion Cracking in Al-Zn-Mg-Cu Alloys, Corros. Sci., 2015, 98, p 50–62

    Article  Google Scholar 

  13. L. Lin, Z. Liu, P. Ying, and M. Liu, Improved Stress Corrosion Cracking Resistance and Strength of a Two-Step Aged Al-Zn-Mg-Cu Alloy Using Taguchi Method, J. Mater. Eng. Perform., 2015, 24, p 4870–4877

    Article  Google Scholar 

  14. P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Influence of Aging Treatments on Alterations of Microstructural Features and Stress Corrosion Cracking Behavior of an Al-Zn-Mg Alloy, J. Mater. Eng. Perform., 2015, 24, p 2792–2805

    Article  Google Scholar 

  15. N.J.H. Holroyd and G.M. Scamans, Stress Corrosion Cracking in Al-Zn-Mg-Cu Aluminum Alloys in Saline Environments, Metall. Mater. Trans. A, 2013, 44, p 1230–1253

    Article  Google Scholar 

  16. F. Wang, B. Xiong, Y. Zhang, B. Zhu, H. Liu, and X. He, Effect of Heat Treatment on the Microstructure and Mechanical Properties of the Spray-Deposited Al-10.8 Zn-2.8 Mg-1.9 Cu alloy, Mater. Sci. Eng. A, 2008, 486, p 648–652

    Article  Google Scholar 

  17. M. Song, Modeling the Hardness and Yield Strength Evolutions of Aluminum Alloy with Rod/Needle-Shaped Precipitates, Mater. Sci. Eng. A, 2007, 443, p 172–177

    Article  Google Scholar 

  18. P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Microstructural, Mechanical and Electrochemical Behaviour of a 7017 Al-Zn-Mg Alloy of Different Tempers, Mater. Charact., 2015, 104, p 49–60

    Article  Google Scholar 

  19. V.K. Gupta and S.R. Agnew, Fatigue Crack Surface Crystallography Near Crack Initiating Particle Clusters in Precipitation Hardened Legacy and Modern Al-Zn-Mg-Cu Alloys, Int. J. Fatigue, 2011, 33, p 1159–1174

    Article  Google Scholar 

  20. P.M.G.P. Moreira, P.F.P. de Matos, and P.M.S.T. de Castro, Fatigue Striation Spacing and Equivalent Initial Flaw Size in Al 2024-T3 Riveted Specimens, Theor. Appl. Fract. Mech., 2005, 43, p 89–99

    Article  Google Scholar 

  21. S. Bai, Z. Liu, Y. Gu, X. Zhou, and S. Zeng, Microstructures and Fatigue Fracture Behavior of an Al-Cu-Mg-Ag Alloy with a Low Cu/Mg Ratio, Mater. Sci. Eng. A, 2011, 530, p 473–480

    Article  Google Scholar 

  22. F. Li, Z. Liu, W. Wu, P. Xia, P. Ying, Q. Zhao, J. Li, S. Bai, and C. Ye, On the Role of Texture in Governing Fatigue Crack Propagation Behavior of 2524 Aluminum Alloy, Mater. Sci. Eng. A, 2016, 669, p 367–378

    Article  Google Scholar 

  23. Z. Liu, F. Li, P. Xia, S. Bai, Y. Gu, D. Yu, and S. Zeng, Mechanisms for Goss-Grains Induced Crack Deflection and Enhanced Fatigue Crack Propagation Resistance in Fatigue Stage II, of an AA2524 Alloy, Mater. Sci. Eng. A, 2015, 625, p 271–277

    Article  Google Scholar 

  24. D. Yin, H. Liu, Y. Chen, D. Yi, B. Wang, B. Wang, F. Shen, S. Fu, C. Tang, and S. Pan, Effect of Grain Size on Fatigue-Crack Growth in 2524 Aluminium Alloy, Int. J. Fatigue, 2016, 84, p 9–16

    Article  Google Scholar 

  25. Z.Q. Zheng, B. Cai, T. Zhai, and S.C. Li, The Behavior of Fatigue Crack Initiation and Propagation in AA2524-T34 Alloy, Mater. Sci. Eng. A, 2011, 528, p 2017–2022

    Article  Google Scholar 

  26. Y.L. Wang, Q.L. Pan, L.L. Wei, B. Li, and Y. Wang, Effect of Retrogression and Reaging Treatment on the Microstructure and Fatigue Crack Growth Behavior of 7050 Aluminum Alloy Thick Plate, Mater. Des., 2014, 55, p 857–863

    Article  Google Scholar 

  27. L. Lin, Z. Liu, W. Liu, Y. Zhou, and T. Huang, Effects of Ag Addition on Precipitation and Fatigue Crack Propagation Behavior of a Medium-Strength Al-Zn-Mg Alloy, J. Mater. Sci. Technol., 2018, 34, p 534–540

    Article  Google Scholar 

  28. T.S. Srivatsan, S. Anand, S. Sriram, and V.K. Vasudevan, The High-Cycle Fatigue and Fracture Behavior of Aluminum Alloy 7055, Mater. Sci. Eng. A, 2000, 281, p 292–304

    Article  Google Scholar 

  29. P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of Solution pH on Electrochemical and Stress Corrosion Cracking Behaviour of a 7150 Al-Zn-Mg-Cu alloy, Mater. Sci. Eng. A, 2014, 604, p 156–165

    Article  Google Scholar 

  30. X.D. Li, X.S. Wang, H.H. Ren, Y.L. Chen, and Z.T. Mu, Effect of Prior Corrosion State on the Fatigue Small Cracking Behaviour of 6151-T6 Aluminum Alloy, Corros. Sci., 2012, 55, p 26–33

    Article  Google Scholar 

  31. A. Thakur, R. Raman, and S.N. Malhotra, Hydrogen Embrittlement Studies of Aged and Retrogressed-Reaged Al-Zn-Mg Alloys, Mater. Chem. Phys., 2007, 101, p 441–447

    Article  Google Scholar 

  32. W. Gruhl, Stress Corrosion Cracking of High Strength Aluminum Alloys, Chem. Inf., 1985, 16, p 1–3

    Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Key Research and Development Program of China (No. 2016YFB0300900) and the Natural Science Foundation of China (No. 51171209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Liu, Z., Han, X. et al. Effect of Overaging on Fatigue Crack Propagation and Stress Corrosion Cracking Behaviors of an Al-Zn-Mg-Cu Alloy Thick Plate. J. of Materi Eng and Perform 27, 3824–3830 (2018). https://doi.org/10.1007/s11665-018-3518-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3518-0

Keywords

Navigation