Skip to main content
Log in

Ostwald Ripening and Relaxation in Dendritic Structures

  • Symposium on Establishment of Microstructural Spacing during Dendritic and Cooperative Growth
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The development of microstructures in cast materials is described as a sequence of processes, among which are dendritic growth and coarsening. Dendritic evolution is analyzed first as the deterministic formation of the tip and its neighborhood, followed by the incubation of stochastic events, including Ostwald ripening and coalescence. Mean-field theories of coarsening are discussed briefly, and the problem of relating classical coarsening of convex spherical particles to that of highly branched dendritic interfaces is shown to be resolved by considering the distribution of chemical potentials over the solid-liquid surface. Experiments relying on stereological measurements yield kinetic coarsening experiments in reasonable agreement with the statistical theories. The influence of volume fraction on the coarsening kinetics is shown to affect the rate constant, which increases about four-fold when the solid fraction rises to 50 pct, but the coarsening exponent remains at the classical value of 1/3. Attempts to measure mean-field intensive thermodynamic properties such as temperature and concentration during dendritic coarsening yield consistent kinetics, although the precise relationships of these mean-field quantities to the stereological parameters are not yet established. The application of morphological scaling laws is stressed throughout, as a fundamental method to predict cast structures in more complex materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michael and M. B. Bever:Trans. AIME, 1954, vol. 200, p. 47.

    Google Scholar 

  2. B.P. Bardes and M.C. Flemings:Trans. A.F.S., 1966, vol. 74, p. 406.

    Google Scholar 

  3. T.Z. Kattamis, J. Coughlin, and M.C. Flemings:Trans. TMS-A1ME, 1967, vol. 239, p. 1504.

    Google Scholar 

  4. M.E. Glicksman, R.J. Schaefer, and J. D. Ayers:Metall. Trans. A, 1976, vol. 7A, p. 1747.

    Article  Google Scholar 

  5. T. Fujioka: Ph.D. Thesis, Carnegie-Mellon University, Pittsburgh, PA, 1977.

    Google Scholar 

  6. S.C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, p. 701.

    Article  Google Scholar 

  7. W. Oldfield:Mat. Sci. and Engr., 1973, vol. 11, p. 211.

    Article  Google Scholar 

  8. R. D. Doherty, B. Cantor, and S. Fairs:Metall. Trans. A., 1978, vol. 9A, p. 621.

    Article  Google Scholar 

  9. J. S. Langer and H. Müller-Krambhaar:Acta Metall., 1978, vol. 26, p. 1681.

    Article  Google Scholar 

  10. I. M. Lifshitz and V. V. Slyozov:Z. Eksper. Teor. Fiz., 1958, vol. 35, p. 479.

    Google Scholar 

  11. C. Wagner:Z. fur Electrochem., 1961, vol. 65, p. 581.

    Google Scholar 

  12. S.C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, p. 716.

    Google Scholar 

  13. M. E. Glicksman, Narsingh Bahadur Singh, and M. Chopra: inMaterials Processing in the Reduced Gravity Environment of Space, Guy E. Rindone, ed., Elsevier Science Publishing Co. Inc., 1982, vol. 9, p. 461.

  14. K. Somboonsuk, J. T. Mason, and R. Trivedi:Metall. Trans. A, 1984, vol. 15A, p. 967.

    Article  Google Scholar 

  15. R. Trivedi:Metall. Trans. A, 1984, vol. 15A, p. 977.

    Article  Google Scholar 

  16. H. Honjo and Y. Sawada:J. Cryst. Growth, 1982, vol. 58, p. 297.

    Article  Google Scholar 

  17. W.W. Mullins and R. F. Sekerka:J. Appl. Phys., 1963, vol. 34, p. 323.

    Article  Google Scholar 

  18. V. V. Voronkov:Sov. Phys. Solid State, 1964, vol. 6, p. 2378.

    Google Scholar 

  19. S. R. Coriell and R. L. Parker: inCrystal Growth, Proceedings of an International Conference on Crystal Growth, Boston, MA, pp. 20-24, 1966, Supplement toPhysics and Chemistry of Solids, H. Steffen Peiser, ed., Pergamon Press, England, 1967, p. 703.

  20. R.F. Sekerka:ibid., p. 691.

  21. G. P. Ivantsov:Dokl. Akad. Nauk, SSSR, 1947, vol. 58, p. 567.

    Google Scholar 

  22. G. Horvay and J. W. Cahn:Acta Metall., 1961, vol. 9, p. 695.

    Article  Google Scholar 

  23. M.E. Glicksman: inAluminum Transformation Technology and Applications—1981, A. Pampillo, ed., ASM, Metals Park, OH, 1982, pp. 347–63.

    Google Scholar 

  24. P. Dann, L. M. Hogan, and J. A. Eady:Met. Forum, 1979, vol. 2, p. 212.

    Google Scholar 

  25. P. Dann, J. A. Eady, and L. M. Hogan:J. Aust. Inst. Metals, 1974, vol. 19, p. 140.

    Google Scholar 

  26. N. J. Whistler and T. Z. Kattamis:J. Cryst. Growth, 1972, vol. 15, p. 20.

    Article  Google Scholar 

  27. K. P. Young and D. H. Kirkwood:Metall. Trans. A, 1975, vol. 6A, p. 197.

    Article  Google Scholar 

  28. T.Z. Kattamis and J. Chien:Z. Metall., 1970, vol. 61, p. 475.

    Google Scholar 

  29. R. M. Sharp and A. Hellawell:J. Cryst. Growth, 1971, vol. 11, p. 77.

    Article  Google Scholar 

  30. S. Huang: Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1979.

    Google Scholar 

  31. M.E. Glicksman and S.C. Huang: inRapid Solidification Processing II, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor’s Pub. Div., Baton Rouge, LA, 1980, p. 76.

    Google Scholar 

  32. M. Tasovac: M. S. Thesis, Rensselaer Polytechnic Institute, 1982.

  33. J. Perepezko: private communication from thesis work of J. J. Richmond, U. of Wisconsin, Madison, WI, 1982.

  34. J. A. Marqusee and J. Ross:J. Chem. Phys., 1983, vol. 79, p. 373.

    Article  Google Scholar 

  35. P. W. Voorhees: Ph.D. Thesis, Rensselaer Polytechnic Institute, 1982.

  36. P. W. Voorhees and M. E. Glicksman: inChemistry and Physics of Rapidly Solidified Materials, TMS-AIME, Warrendale, PA, B.L. Berkowitz and R.O. Scattergood, eds., 1983, p. 63.

    Google Scholar 

  37. P. W. Voorhees and M. E. Glicksman: inRapidly Solidified Amorphous and Crystalline Alloys, H. Kear, B.C. Giessen, and M. Cohen, eds., Elsevier Science Publishing Co., Inc., New York, NY, 1982, p. 33.

    Google Scholar 

  38. R.T. Dehoff and C.V. Iswaren,Metall. Trans. A, 1982, vol. 13A, p. 1389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glicksman, M.E., Voorhees, P.W. Ostwald Ripening and Relaxation in Dendritic Structures. Metall Trans A 15, 995–1001 (1984). https://doi.org/10.1007/BF02644691

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644691

Keywords

Navigation