Skip to main content
Log in

Thermomechcmical processing of Inconel 718 by shock-wave deformation

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The response of Inconel 718 nickel-base alloy to thermomechanical processing (TMP) utilizing a 510 Kbar planar shock wave was evaluated. The results were compared with those of conventional TMP by cold rolling to 19.1 pct reduction in thickness; this provided a generalized (or effective) strain equivalent to the transient shock strain. Instead of deformation in the solution treated condition, the inclusion of a predeformation, partial aging step in an optimized TMP schedule led to the greatest improvements in strength, stress-rupture life, and low-cycle fatigue life. The mechanical behavior was correlated with substructure and microstructure. Predeformation aging inhibits thermal recovery during final aging and produces a uniform dispersion of γ′’ precipitates. On a generalized (or effective) strain basis, conventional TMP by cold rolling produces higher strengths than shock TMP due to a higher dislocation density in the former. This suggests that maximum shear strain is a better basis of comparison. Since dislocation substructure is the primary contributor to property modification of Inconel 718 by TMP, the effective service temperature of thermomechanically processed material is limited to 1200°F (649°C), irrespective of the method of working.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Couts, Jr. and J. E. Coyne:Proc. 2nd Conf. on Superalloys, Chapter K, Report No. MCIC-72-10, Metals and Ceramics Information Center, Batteile Memorial Institute, Columbus, Ohio, 1972.

    Google Scholar 

  2. C. J. Slunde and A. M. Hall: NASA TMX-53443, Batteile Memorial Institute, Columbus, Ohio, 1966.

    Google Scholar 

  3. B. H. Kear, J. M. Oblak, and W. A. Owczarski:J. Metals, 1972, vol. 24, no. 6, pp. 25–32.

    CAS  Google Scholar 

  4. F. M. Richmond:J. Eng. Power, 1967, vol. 89, pp. 61–74.

    CAS  Google Scholar 

  5. R. S. Cremisio, H. M. Butler, and J. F. Radavich:J. Metals, 1969, vol. 21, no. 11, pp. 55–61.

    CAS  Google Scholar 

  6. R. F. Decker:Steel-Strengthening Mechanisms, pp. 147-70, Climax Molydenum Co., 1969.

  7. J. C. Uy, C. J. Nolan, and T. E. Davidson:Trans. ASM, 1967, vol. 60, pp. 693–98.

    CAS  Google Scholar 

  8. R. N. Orava:Mater. Sci. Eng., 1973, vol. 11, pp. 177–80.

    Article  CAS  Google Scholar 

  9. R. N. Orava: Denver Research Institute, University of Denver, Final Report No. DRI 2638, Contract No. N62269-73-C-0376, U.S. Naval Air Systems Command, 1974.

  10. M. A. Meyers: Ph.D. Dissertation, University of Denver, Denver, Colorado, 1974.

    Google Scholar 

  11. H. J. Wagner, R. S. Burns, T. E. Caroll, and R. C. Simon:Nickel-Base Alloys/ Alloy 718, Defense Metals Information Center, Battelle Memorial Institute, Columbus, Ohio, 1968.

    Google Scholar 

  12. M. Conserva, M. Buratti, E. Di Russo, and F. Gatto:Mater. Sci. Eng., 1973, vol. 11, pp. 103–12.

    Article  CAS  Google Scholar 

  13. R. A. Heacox:Proc. 2nd Intl. Conf. on Superalloys, Chapter P, Report No. MCIC-72-10, Metals and Ceramics Information Center, Battelle Memorial Institute, Columbus, Ohio, 1972.

    Google Scholar 

  14. A. Kaufman and S. Niedzwiedz:Proc. of the Conference on Quantitative Relation Between Properties and Microstructures, Israel University Press, 1969, pp. 139-44.

  15. J. P. Stroup and R. A. Heacox:J. Metals, 1969, vol. 21, no. 11, pp. 46–54.

    CAS  Google Scholar 

  16. D. R. Muzyka and G. N. Maniar:Metals Eng. Quart., 1969, November, pp. 23–36.

    Google Scholar 

  17. C. S. Smith:Trans. TMS-AIME, 1958, vol. 212, pp. 574–89.

    CAS  Google Scholar 

  18. L. M. Clarebrough, M. E. Hargreaves, and G. W. Est:Proc. Roy. Soc., London, 1955, vol. 232A, pp. 252–70.

    ADS  Google Scholar 

  19. R. W. K. Honeycombe:The Plastic Deformation of Metals, pp. 289–300, St. Martins Press, New York, 1968.

    Google Scholar 

  20. H. E. MCoy, Jr. and D. L. McElroy:Trans. ASM, 1968, vol. 61, pp. 730–41.

    Google Scholar 

  21. A. Christou and N. Brown:Phil. Mag., 1973, vol. 27, pp. 281–96.

    Article  CAS  ADS  Google Scholar 

  22. R. L. Nolder and G. Thomas:Acta Met., 1964, vol. 12, pp. 227–40.

    Article  CAS  Google Scholar 

  23. G. E. Dieter:Response of Metals to High Velocity Deformation, P. G Shewnon and V. F. Zackay, eds., pp. 409–45, Interscience, New York, 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.A., Orava, R.N. Thermomechcmical processing of Inconel 718 by shock-wave deformation. Metall Trans A 7, 179–190 (1976). https://doi.org/10.1007/BF02644455

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644455

Keywords

Navigation