Skip to main content

Effective Properties of Composite Material Based on Total Strain Energy Equivalence

  • Chapter
  • First Online:
Plasticity, Damage and Fracture in Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 121))

Abstract

In the present work the mechanical equivalence hypothesis, classically used in continuum damage mechanics problems, was applied to estimate the elastoplastic properties of isotropic composite materials. The equivalence of total internal energy was postulated between a real, heterogeneous composite material, and a fictitious, quasi-homogeneous configuration. The properties of a composite material were expressed as analytical functions of an inclusion volume fraction and properties of constituent materials. The results were compared with the results of several other methods of efective elastic properties estimation. In the inelastic range of the material response the proposed approach was examined by means of parametric studies to showits ability to reflect different experimentally observed features of real composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASM (1990) ASM Handbook, vol 2 Properties and Selection: Nonferrous Alloys and Special-purpose Materials. ASM International Handbook Committee

    Google Scholar 

  • BonfieldW(1988) Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacement. Annals of the New York Academy of Sciences 523:173–177

    Article  CAS  Google Scholar 

  • Chaboche J (1997) Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. International Journal of Solids and Structures 34(18):2239–2254

    Article  Google Scholar 

  • Charriére E, Terrazzoni S, Pittet C, Mordasini P, Dutoit M, Lemaître J, Zysset P (2001) Mechanical characterization of brushite and hydroxyapatite cements. Biomaterials 22:2937–2945

    Article  Google Scholar 

  • Chow C, Lu T (1992) An analytical and experimental study of mixed-mode ductile fracture under nonproportional loading. International Journal of Damage Mechanics 1:191–236

    Article  Google Scholar 

  • Egner H (2012) On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials. International Journal of Solids and Structures 49(2):279–288

    Article  Google Scholar 

  • Egner H, Rys M (2017) Total energy equivalence in constitutive modelling of multidissipative materials. International Journal of Damage Mechanics 3:417–446

    Article  Google Scholar 

  • Ganczarski AW, Egner H, Muc A, Skrzypek JJ (2010) Constitutive models for analysis and design of multifunctional technological materials. In: Rustichelli F, Skrzypek J (eds) Innovative Technological Materials: Structural Properties by Neutron Scattering, Synchrotron Radiation and Modeling, Springer, pp 179–223

    Google Scholar 

  • Koszkul J (2001) Kompozyty poliamidu 6 z włóknem szklanym. Composites 1(2):159–162

    Google Scholar 

  • Kursa M,Kowalczyk-Gajewska K, Lewandowski MJ, PetrykH (2018) Elastic-plastic properties of metal matrix composites: validation of meanfeld approaches. European Journal of Mechanics - A/Solids 68:53–66

    Article  Google Scholar 

  • Murakami S (2012) Continuum damage mechanics: A continuum mechanics approach to the analysis of damage and fracture. Springer-Verlag

    Google Scholar 

  • Murakami S, Ohno N (1981) A continuum theory of creep and creep damage. In: Ponter A, Hayhurst D (eds) Creep in Structures, Springer, Berlin, 3rd IUTAM Symposium on Creep in Structures, pp 422–444

    Chapter  Google Scholar 

  • Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für angewandte Mathematik und Mechanik 9(1):49–58

    Article  CAS  Google Scholar 

  • Rys M, Egner H (2019) Energy equivalence based constitutive model of austenitic stainless steel at cryogenic temperatures. International Journal of Solids and Structures 164:52–65

    Article  CAS  Google Scholar 

  • Saanouni K, Forster C, Ben Hatira F (1994) On the inelastic flow with damage. International Journal of Damage Mechanics 3:140–169

    Article  Google Scholar 

  • Skrzypek JJ, Kuna-Ciskał H (2003) Anisotropic elastic-brittle-damage and fracture models based on irreversible thermodynamics. In: Skrzypek JJ, Ganczarski AW (eds) Anisotropic Behaviour of Damaged Materials, Springer, Berlin, Heidelberg, Lecture Notes in Applied and Computational Mechanics, vol 9, pp 143–184

    Chapter  Google Scholar 

  • Voigt W (1889) Über die Beziehungen zwischen den beiden Elastizitätskonstanten isotroper Körper. Annalen der Physik 274(12):573–587

    Article  Google Scholar 

  • Wisniewska A, Hernik S, Liber-Knec A, Egner H (2019) Effective properties of composite material based on total strain energy equivalence. Composites Part B Engineering 166:213–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Wisniewska or Szymon Hernik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wisniewska, A., Hernik, S., Egner, H. (2020). Effective Properties of Composite Material Based on Total Strain Energy Equivalence. In: Altenbach, H., Brünig, M., Kowalewski, Z. (eds) Plasticity, Damage and Fracture in Advanced Materials . Advanced Structured Materials, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-34851-9_11

Download citation

Publish with us

Policies and ethics