Skip to main content
Log in

The rate-controlling deformation mechanisms in superplasticity—a critical assessment

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The phenomenon of micrograin superplasticity is critically reviewed in the context of the dominant microstructural characteristics,i.e., grain boundary sliding and migration, grain rotation and rearrangement, and dislocation activity. Existing theoretical models consider the accommodation process for grain boundary sliding to be either purely diffusional or due to dislocation motion. The latter can be in the form of individual dislocations or dislocations in the pile-up arrays in the interior of the grains or in grain interfaces. The mechanical properties,i.e., stress, strain-rate, activation energy, threshold stress, and so forth, are compared with the prediction of these models. The extreme sensitivity of the activation energy for superplasticity (which usually equals that for grain boundary diffusion) to alloy or impurity content is emphasized. The very large influence to prior thermal and mechanical history of the specimens on the mechanical data is discussed in the context of alteration of the significant details of grain boundary substructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Johnson:Metall. Rev., 1970, vol. 15, p. 115.

    Google Scholar 

  2. G. J. Davies, J. W. Edington, C. P. Cutler, and K. A. Padmanabham:J. Mat. Sci., 1970, vol. 5, p. 1091.

    Article  CAS  Google Scholar 

  3. J.W. Edington, K. N. Melton, and C.P. Cutler:Prog. Materials Science, 1976, vol. 21, p. 61.

    Article  CAS  Google Scholar 

  4. T. H. Alden: in “Treatise on Materials Science and Technology,” R. J. Arsenault, ed., Academic Press, New York, NY, 1975, vol. 6, p. 226.

    Google Scholar 

  5. A.K. Mukherjee:Ann. Rev. Mater. Sci., 1979, vol. 9, p. 191.

    Article  CAS  Google Scholar 

  6. D.M.R. Taplin, G. L. Dunlop, and T. G. Langdon: ibid., p. 151.

  7. A. Arieli and A. K. Mukherjee: Proceedings of the Conference on “Micromechanisms for Plasticity and Fracture in Engineering Solids,” Oxford, England, 1980, to be published by Pergamon Press.

    Google Scholar 

  8. A. Arieli and A. K. Mukherjee:Mater. Sci. and Engr., 1980, vol. 45, p. 61.

    Article  Google Scholar 

  9. H.W. Hayden, R.C. Gibson, H.F. Merrick, and J.H. Brophy:Trans. ASM, 1967, vol. 60, p. 3.

    CAS  Google Scholar 

  10. G. Rai and N.J. Grant:Metall. Trans. A, 1975, vol. 6A, p. 385.

    CAS  Google Scholar 

  11. S. T. Lam, A. Arieli, and A. K. Mukherjee:Mater. Sci. Eng., 1979, vol. 40, p. 73.

    Article  CAS  Google Scholar 

  12. A. Arieli and A. Rosen:Metall. Trans. A, 1977, vol. 8A, p. 1591.

    CAS  Google Scholar 

  13. H. W. Hayden and J. H. Brophy:Trans. ASM, 1968, vol. 61, p. 542.

    Google Scholar 

  14. M. L. Vaidya, K. L. Murty, and J. E. Dorn:Acta. Metall., 1973, vol. 21, p. 1615.

    Article  CAS  Google Scholar 

  15. S. C. Misro and A. K. Mukherjee: in “Rate Processes in Plastic Deformation,” J. C. M. Li and A. K. Mukherjee, eds., ASM, Metals Park, OH, 1975, p. 434.

    Google Scholar 

  16. A. Arieli, A. K. S. Yu, and A. K. Mukherjee:Metall. Trans. A, 1980, vol. 11A, p. 181.

    CAS  Google Scholar 

  17. A. Arieli and A. K. Mukherjee:Acta Metall., 1980, vol. 10, p. 1571.

    Google Scholar 

  18. J. E. Bird, A. K. Mukherjee, and J. E. Dorn: in “Quantitative Relation Between Properties and Microstructure,” D. G. Brandon and A. Rosen, eds., Israel Universities Press, Jerusalem, 1969, p. 255.

    Google Scholar 

  19. W. Beere:J. Mater. Sci., 1977, vol. 12, p. 2093.

    Article  Google Scholar 

  20. M. F. Ashby:Surface Sci., 1972, vol. 31, p. 498.

    Article  CAS  Google Scholar 

  21. M. F. Ashby and R. A. Verall:Acta Metall., 1973, vol. 21, p. 149.

    Article  CAS  Google Scholar 

  22. A. Ball and M. M. Hutchinson:Met. Sci. J., 1969, vol. 3, p. 1.

    Article  Google Scholar 

  23. A. K. Mukherjee:Mater. Sci. Eng., 1971, vol. 8, p. 83.

    Article  CAS  Google Scholar 

  24. A. K. Mukherjee: in “Grain Boundaries in Engineering Materials,” J. L. Walteret al, eds., Claitor Publishing, Baton Rouge, LA, 1975, p. 93.

    Google Scholar 

  25. R.C. Gifkins:Metall. Trans. A, 1976, vol. 7A, p. 1225.

    CAS  Google Scholar 

  26. R.C. Gifkins:J. Mater. Sci., 1978, vol. 13, p. 1926.

    Article  CAS  Google Scholar 

  27. J.H. Gittus:Trans. ASME, J. Eng. Mater. Technol., 1977, vol. 99, p. 244.

    CAS  Google Scholar 

  28. H. W. Hayden, S. Floreen, and P. D. Goodell:Metall. Trans., 1972, vol. 3, p. 833.

    Article  CAS  Google Scholar 

  29. J. R. Spingarn and W. D. Nix:Acta Metall., 1979, vol. 27, p. 171.

    Article  CAS  Google Scholar 

  30. A. Arieli and A. K. Mukherjee:Mater. Sci. Eng., 1980, vol. 45, p. 61.

    Article  Google Scholar 

  31. J. Weertman:Trans. ASM, 1968, vol. 61, p. 681.

    CAS  Google Scholar 

  32. A. K. Mukherjee, J. E. Bird, and J. E. Dorn:Trans. ASM, 1969, vol. 62, p. 155.

    CAS  Google Scholar 

  33. P. M. Hazzeldine and D. E. Newbury: Proceedings of ICSMA3, Institute of Metals, London, England, 1973, vol. I, p. 202.

    Google Scholar 

  34. R. L. Coble:J. Appl. Phys., 1963, vol. 34, p. 1679.

    Article  Google Scholar 

  35. J. Bardeen and C. Herring: in “Imperfections in Nearly Perfect Crystals,” W. Shockley, ed., J. Wiley, New York, NY, 1952, p. 279.

    Google Scholar 

  36. W. Beere:Scripta Metall., 1978, vol. 12, p. 337.

    Article  CAS  Google Scholar 

  37. S. Floreen:Scripta Metall., 1967, vol. 1, p. 19.

    Article  CAS  Google Scholar 

  38. R.C. Gifkins:J. Inst. Metals, 1967, vol. 97, p. 373.

    Google Scholar 

  39. I. W. Hall, T. Livini, E. Ganin, and A. Rosen:Strength of Metals and Alloys, P. Hassen,et al, eds., Pergamon Press, 1979, vol. 1, p. 451.

  40. S.-A. Shei and T. G. Langdon:Acta Metall., 1978, vol. 26, p. 639.

    Article  CAS  Google Scholar 

  41. T. Kainuma, A. Arieli, and A.K. Mukherjee: unpublished research, University of California, Davis, CA, 1980.

  42. T. Chandra, J. J. Jonas, and D. M. R. Taplin:J. Mater. Sci., 1978, vol. 13, p. 2380.

    Article  CAS  Google Scholar 

  43. R. B. Vastava and T. G. Langdon:Acta Metall., 1979, vol. 27, p. 251.

    Article  CAS  Google Scholar 

  44. P. Sharriat, T.G. Langdon, and R. B. Vastava: presented at 109th AIME Annual Meeting, Las Vegas, NV, 1980.

  45. R. Z. Valiev and O. A. Kaybyshev:Phys. Stat. Sol(a), 1977, vol. 44, p. 65.

    Article  CAS  Google Scholar 

  46. R.C. Gifkins:Trans. TMS-AIME, 1959, vol. 215, p. 1015.

    CAS  Google Scholar 

  47. J.L. Walter and H.E. Cline:Trans. TMS-AIME, 1968, vol. 242, p. 1823.

    Google Scholar 

  48. F. A. Mohamed and T. G. Langdon:Philos. Mag., 1975, vol. 32, p. 697.

    Article  CAS  Google Scholar 

  49. F.A. Mohamed and T.G. Langdon:Acta Metall., 1975, vol. 23, p. 117.

    Article  CAS  Google Scholar 

  50. B.J. MacLean: M.S. Thesis, University of California, Davis, CA, 1980.

  51. A. Arieli, unpublished research, University of California, Davis, CA, 1980.

  52. J. Hedworth and M. J. Stowell:J. Mater. Sci., 1971, vol. 6, p. 1061.

    Article  CAS  Google Scholar 

  53. A. Arieli and A. Rosen:Scripta Metall., 1976, vol. 10, p. 471.

    Article  Google Scholar 

  54. A. Arieli and A. K. Mukherjee:Scripta Metall., 1980, vol. 14, p. 891.

    Article  Google Scholar 

  55. B. Burton:Diffusional Creep in Polycrystalline Materials, Trans. Technol. Publications, Bay Village, OH, 1977, p. 96.

    Google Scholar 

  56. C. I. Smith, B. Norgate, and N. Ridley:Scripta Metall., 1974, vol. 8, p. 159.

    Article  CAS  Google Scholar 

  57. A. Arieli and A. K. Mukherjee:Scripta Metall., 1980, vol. 14, p. 891.

    Article  Google Scholar 

  58. A.E. Geklini and C.R. Barrett:J. Mater.Sci., 1976, vol. 11,p.510.

    Article  Google Scholar 

  59. P. H. Pumphrey: in “Grain Boundary Structure and Properties,” G. A. Chadwick and D.A. Smith, eds., Academic Press, London, 1976, p. 139.

    Google Scholar 

  60. H. Gleiter and B. Chalmers:Prog. Mater. Sci., 1972, vol. 16, p. 1.

    Article  Google Scholar 

  61. A. Arieli and A.K. Mukherjee:Scripta Metall., 1979, vol. 13, p. 331.

    Article  CAS  Google Scholar 

  62. S.-A. Shei and T. G. Langdon:Acta Metall., 1978, vol. 26, p. 1153.

    Article  CAS  Google Scholar 

  63. F. A. Mohamed, S.-A. Shei, and T. G. Langdon:Acta Metall., 1975, vol. 23, p. 1443.

    Article  CAS  Google Scholar 

  64. G. Herriot, B. Baudelet, and J. J. Jonas:Acta Metall., 1976, vol. 24, p. 687.

    Article  CAS  Google Scholar 

  65. D. L. Holt and W. A. Backofen:Trans. ASM, 1966, vol. 59, p. 755.

    CAS  Google Scholar 

  66. M. A. Gjostein: in “Diffusion,” ASM, Metals Park, OH, 1973, p. 241.

    Google Scholar 

  67. D. Bergner and W. Lange: cited in Ref. 60.

  68. Y. Adda and J. Philibert:La Diffusion Dans Les Solides, Presses Universitaires De France, Paris, 1966, p. 1148.

    Google Scholar 

  69. D. Juve-Duc, D. Treheux, and P. Guirlandeng:Scripta Metall., 1978, vol. 12, p. 1107.

    Article  CAS  Google Scholar 

  70. R. Rosenberg:J. Vac. Sci. Technol., 1972, vol. 9, p. 263.

    Article  CAS  Google Scholar 

  71. P.R. Howell, A.R. Jones, and B. Ralph:J. Mater. Sci., 1975, vol. 10, p. 1351.

    Article  CAS  Google Scholar 

  72. D. Delannay, A. M. Huntz, and P. Lacombe:Scripta Metall., 1979, vol. 13, p. 419.

    Article  Google Scholar 

  73. J. Bernardini and G. Martin:Scripta Metall., 1976, vol. 10, p. 833.

    Article  Google Scholar 

  74. A. N. Stroch:Philos. Mag., 1955, vol. 46, p. 968.

    Google Scholar 

  75. D.M. Avery and W.A. Backofen:Trans. ASM, 1965, vol. 58, p. 551.

    CAS  Google Scholar 

  76. R. C. Cook and N. R. Rosebrough:Scripta Metall., 1968, vol. 2, p. 487.

    Article  CAS  Google Scholar 

  77. K.T. Aust and B. Chalmers:Metall. Trans., 1970, vol. 1, p. 1095.

    CAS  Google Scholar 

  78. Grain Boundary Structure and Properties, G. A. Chadwick and D. A. Smith, eds., Academic Press, London, 1976, p. 201.

  79. E. Venkastesh and L. E. Murr:Scripta Metall., 1976, vol. 10, p. 477.

    Article  Google Scholar 

  80. L.E. Murr:Metall. Trans. A, 1975, vol. 6A, p. 505.

    CAS  Google Scholar 

  81. K. Tangri and T. Malis:Surface Sci., 1972, vol. 31, p. 101.

    Google Scholar 

  82. R. A. Varin and K. Tangri:Scripta Metall., 1980, vol. 14, p. 337.

    Article  CAS  Google Scholar 

  83. D. Grivas: Ph.D Dissertation, University of California, Berkeley, CA, 1978.

  84. G. R. Kegg, C. A. P. Horton, and I. M. Silcock:Philos. Mag., 1973, vol. 27, p. 1041.

    Article  CAS  Google Scholar 

  85. G. Gurewitz: work in progress, University of California, Davis, CA.

Download references

Author information

Authors and Affiliations

Authors

Additional information

A. ARIELI, formerly with the Division of Materials Science and Engineering, Department of Mechanical Engineering, University of California, Davis, CA 95616

This paper is based on a presentation made at the symposium “On the Mechanical, Microstructural and Fracture Processes in Superplasticity” held at the annual meeting of the AIME in Pittsburgh, PA on October 7, 1980 under the sponsorship of the Flow and Fracture Activity of the Materials Science Division of ASM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arieli, A., Mukherjee, A.K. The rate-controlling deformation mechanisms in superplasticity—a critical assessment. Metall Trans A 13, 717–732 (1982). https://doi.org/10.1007/BF02642385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642385

Keywords

Navigation