Skip to main content
Log in

Effect of the Strain and Strain Rate on Microstructure Evolution and Superplastic Deformation Mechanisms

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Parameters of superplasticity of the Al–7.6% Mg–0.6% Mn–0.25% Cr alloy have been studied in the range of 490–520°C, and the optimum temperature of deformation has been determined. The evolution of the grain structure in the bulk and on the surface of samples during the superplastic deformation at a temperature of 510°C has been analyzed. The contribution of grain-boundary sliding has been estimated in the strain-rate regime of superplastic deformation according to the results of the analysis of changes in the structure of the surface with preliminarily applied marker scratches. The contribution of grain-boundary sliding to the total deformation is 20–30%; the contribution of diffusion creep decreases from 40 to 20% with an increase in the deformation rate by an order of magnitude, from 1 × 10–3 to 1 × 10–2 s–1. The intragranular deformation is localized in the peripheral regions of grains and in the region of striated zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. Kalpakjian, Manufacturing engineering and technology, 3rd ed. (Addison-Wesley Publishing Company, Massachusetts, 1995).

    Google Scholar 

  2. T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, New York, 2005).

    Google Scholar 

  3. K. Sotoudeh and P. S. Bate, “Diffusion creep and superplasticity in aluminium alloys,” Acta Mater. 58, 1909–1920 (2010).

    Article  Google Scholar 

  4. I. I. Novikov and V. K. Portnoi, “Superplasticity of alloys with ultrafine grain,” (Metallurgiya, Moscow, 1981) [in Russian].

    Google Scholar 

  5. H. Masuda, T. Kanazawa, H. Tobe, and E. Sato, “Dynamic anisotropic grain growth during superplasticity in Al–Mg–Mn alloy,” Scr. Mater. 149, 84–87 (2018).

    Article  Google Scholar 

  6. R. W. Cahn, P. Haasen, and E. J. Kramer, Mater. Sci. Technology (VCH, New York, 1993), Vol. 6.

    Google Scholar 

  7. R. M. Cleveland, A. K. Ghosh, and J. R. Bradley, “Comparison of superplastic behavior in two 5083 aluminum alloys,” Mater. Sci. Eng., A 351, 228–236 (2003).

    Article  Google Scholar 

  8. K. Zhang and H. Yan, “Deformation behavior of fine-grained 5083 Al alloy at elevated temperature,” Trans. Nonferrous Met. Soc. China 19, 307–311 (2009).

    Article  Google Scholar 

  9. R. Verma, A. K. Ghosh, S. Kim, and C. Kim, “Grain refinement and superplasticity in 5083 Al,” Mater. Sci., Eng. A 191, 143–150 (1995).

    Article  Google Scholar 

  10. S. S. Woo, Y. R. Kim, D. H. Shin, and W. J. Kim, “Effects of Mg concentration on the quasi-superplasticity of coarse-grained Al–Mg alloys,” Scr. Mater. 37, 1351–1358 (1997).

    Article  Google Scholar 

  11. A. A. Kishchik, A. V. Mikhailovskaya, V. S. Levchenko, and V. K. Portnoi, “Formation of microstructure and superplasticity of magnalics,” Phys. Met. Metallogr. 118, 96–103 (2017).

    Article  Google Scholar 

  12. D. Y. Maeng, J. H. Lee, S. I. Hong, and B. S. Chun, “Microstructure and mechanical properties of rapidly solidified Al–7 wt % Mg–X (X = Cr, Zr or Mn) alloys,” Mater. Sci. Eng., A 311, 128–134 (2001).

    Article  Google Scholar 

  13. A. D. Kotov, A. V. Mikhaylovskaya, and V. K. Portnoy, “Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr alloys,” Phys. Met. Metallogr. 115, 730–735 (2014).

    Article  Google Scholar 

  14. V. K. Portnoy, D. S. Rylov, V. S. Levchenko, and A. V. Mikhaylovskaya, “The influence of chromium on the structure and superplasticity of Al–Mg–Mn alloys,” J. Alloys Compd. 581, 313–317 (2013).

    Article  Google Scholar 

  15. G. T. Langdon, “Grain boundary sliding revisited: Developments in sliding over four decades,” J. Mater. Sci. 41, 597–609 (2006).

    Article  Google Scholar 

  16. E. Alabort, P. Kontis, D. Barba, K. Dragnevski, and R. C. Reed, “On the mechanisms of superplasticity in Ti–6Al–4V,” Acta Mater. 105, 449–463 (2016).

    Article  Google Scholar 

  17. M. A. Rust and R. I. Todd, “Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbor switching and absence of dislocation activity,” Acta Mater. 59, 5159–5170 (2011).

    Article  Google Scholar 

  18. C. M. Cepeda-Jiménez, J. M. García-Infanta, O. A. Ruano, and F. Carreno, “High strain rate superplasticity at intermediate temperatures of the Al7075 alloy severely processed by equal channel angular pressing,” J. Alloys Compd. 509, 9589–9597 (2011).

    Article  Google Scholar 

  19. H. E. Adabbo, G. Gonzalez-Doncel, O. A. Ruano, J. M. Belzunce, and O. D. Sherby, “Strain hardening during superplastic deformation of Al-7475 alloy,” Mater. Res. Soc. 3, 587–594 (1989).

    Article  Google Scholar 

  20. A. V. Mikhaylovskaya, O. A. Yakovtseva, M. N. Sitkina, A. D. Kotov, A. V. Irzhak, S. V. Krymskiy, and V. K. Portnoy, “Comparison between superplastic deformation mechanisms at primary and steady stages of the fine grain AA7475 aluminium alloy,” Mater. Sci. Eng., A 718, 277–286 (2018).

    Article  Google Scholar 

  21. J. R. Spingarn and W. D. Nix, “Diffusion creep and diffusionally accommodated grain rearrangement,” Acta Metall. 26, 1389–1398 (1978).

    Article  Google Scholar 

  22. I. I. Novikov, V. K. Portnoy, and V. S. Levchenko, “Investigation of structural changes during superplastic deformation of Zn–22%Al alloy by replica locating technique,” Acta Metall. 29, 1077–1090 (1981).

    Article  Google Scholar 

  23. O. A. Yakovtseva, A. V. Mikhaylovskaya, A. V. Pozdniakov, A. D. Kotov, and V. K. Portnoy, “Superplastic deformation behaviour of aluminium containing brasses,” Mater. Sci. Eng., A 674, 135–143 (2016).

    Article  Google Scholar 

  24. W. Wang, M. Yang, D. Yan, P. Jiang, F. Yuan, and X. Wu, “Deformation mechanisms for superplastic behaviors in a dual-phase high specific strength steel with ultrafine grains,” Mater. Sci. Eng., A 702, 133–141 (2017).

    Article  Google Scholar 

  25. O. A. Yakovtseva, A. V. Mikhailovskaya, A. D. Kotov, and V. K. Portnoi, “Effect of alloying on superplasticity of two-phase brasses,” Phys. Met. Metallogr. 117, 742–748 (2016).

    Article  Google Scholar 

  26. C. W. Humpries and N. Ridley, “Cavitation during the superplastic deformation of an α/β brasses,” J. Mater. Sci. 13, 2477–2482 (1978).

    Article  Google Scholar 

  27. O. A. Yakovtseva, A. V. Mikhaylovskaya, A. G. Mochugovskiy, V. V. Cheverikin, and V. K. Portnoy, “Superplastic deformation mechanisms in high magnesium containing aluminum alloy,” Mater. Sci. Forum 838–839, 66–71 (2016).

    Article  Google Scholar 

  28. D. H. Bae and A. K. Ghosh, “Cavity growth during superplastic flow in an Al−Mg alloy: I. Experimental study,” Acta Mater. 50, 993−1009 (2002).

    Article  Google Scholar 

  29. R. Verma, P. A. Friedman, A. K. Ghosh, S. Kim, and C. Kim, “Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet,” Metall. Mater. Trans. A 27, 1889–1898 (1996).

    Article  Google Scholar 

  30. J. J. Blandin, B. Hong, A. Varloteaux, M. Suery, and G. L’esperance, “Effect of the nature of grain boundary regions on cavitation of a superplastically deformed aluminium,” Acta Mater. 44, 2317–2326 (1996).

    Article  Google Scholar 

  31. Determination of Superplasticity Indicators: Methodical Recommendation MR 252-31-86 (VILS, Moscow, 1986) [in Russian].

  32. V. K. Portnoy and I. I. Novikov, “Evaluation of grain boundary sliding contribution to the total strain during superplastic deformation,” Scr. Mater. 40, 39–43 (1999).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Ministry of Education and Science of the Russia Federation in the framework of the Federal task no. 11.7172.2017/8.9 for 2017–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Yakovtseva.

Additional information

Translated by S. Gorin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovtseva, O.A., Mikhaylovskaya, A.V., Kotov, A.D. et al. Effect of the Strain and Strain Rate on Microstructure Evolution and Superplastic Deformation Mechanisms. Phys. Metals Metallogr. 120, 87–94 (2019). https://doi.org/10.1134/S0031918X18110224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18110224

Keywords:

Navigation