Skip to main content
Log in

A possible role for singlet oxygen in the initiation of fatty acid autoxidation

  • Technical
  • Published:
Journal of the American Oil Chemists Society

Abstract

A mechanism for the initiation of autoxidation in fatty acids is proposed which involves singlet state oxygen, formed through a photosensitization reaction, as the reactive intermediate. Both singlet oxygen generated in a radio-frequency gasdischarge, and photosensitization by natural pigments, were shown to catalyze the oxidation of methyl linoleate. The involvement of singlet oxygen was shown by the identification of nonconjugated hydroperoxides as products common to both photooxidation and singlet O2 oxidation. Nonconjugated hydroperoxides could not be detected among the free radical autoxidation products. Further proof for the above mechanism was gained by showing that compounds known to react strongly with singlet oxygen, inhibited the photooxidation. With the exception of chlorophyll, all sensitizers could be completely inhibited. Although singlet oxygen formation can account for approximately 80% of the observed chlorophyll photooxidation, at least one other mechanism must be involved. It is postulated that proton abstraction by the photoactivated carbonyl group of chorophyll could account for the remaining 20% of the observed photooxidation. The conclusion is drawn that oxygen, excited to its singlet state by a photosensitization process, plays the important role of forming the original hydroperoxides whose presence is necessary before the normal free radical autoxidation process can begin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farmer, E. H., Trans. Faraday Soc.42, 228–236 (1946).

    Article  CAS  Google Scholar 

  2. Bolland, J. L., Proc. Roy. Soc. A186, 217–239 (1946).

    Google Scholar 

  3. Gunstone, F. D., and T. P. Hilditch, J. Chem. Soc. 836–841 (1945). Nature116, 558–559 (1950).

    Google Scholar 

  4. Waters, W. A., Trans. Faraday Soc.42, 281 (1946).

    Article  Google Scholar 

  5. Khan, N. A., Can. J. Chem.32, 1149–1154 (1954).

    Article  CAS  Google Scholar 

  6. Khan, N. A., Ibid37, 1029–1034 (1959).

    Article  CAS  Google Scholar 

  7. Privett, O. S., and M. L. Blank, JAOCS39, 465–469 (1062).

    Google Scholar 

  8. Bateman, L., Quart. Rev. (London)8, 147–167 (1954).

    CAS  Google Scholar 

  9. Ingold, K. U., Chem. Rev.61, 563–589 (1961).

    Article  CAS  Google Scholar 

  10. Wigner, E. P., “Group Theory,” Academic Press, New York (1959).

    Google Scholar 

  11. Kopecky, K. R., and H. J. Reich, Can. J. Chem.43, 2265–2270 (1965).

    Article  CAS  Google Scholar 

  12. Foote, C. S., and S. Wexler, J. Am. Chem. Soc.86, 3879–3880 (1964);Ibid. J. Am. Chem. Soc.86, 3880–3881; Foote, C. S., S. Wexler and W. Ando, Tetrahedron Letters 1965, 4111–4118.

    Article  CAS  Google Scholar 

  13. Corey, E. J., and W. C. Taylor, J. Am. Chem. Soc.86, 3881–3882 (1964).

    Article  CAS  Google Scholar 

  14. Wilson, T., Ibid88, 2898–2902 (1966).

    Article  CAS  Google Scholar 

  15. McKeown, E., and W. A. Waters, J. Chem. Soc. (B)1966, 1040–1046.

  16. Rawls, H. R., and P. J. van Santen, Tetrahedron Letters1966, 1675–1678.

  17. Swern, D., and W. E. Parker, JAOCS30, 5–7 (1953).

    Article  CAS  Google Scholar 

  18. Fonor, S. N., and R. L. Hudson, J. Chem. Phys.25, 601–602 (1956);Ibid. J. Chem. Phys.23, 1974–1975 (1955); L. Elias, E. A. Ogryzlo and I. I. Schiff, Can. J. Chem.37, 1680–1689 (1959).

    Article  Google Scholar 

  19. Privett, O. S. and C. Nickel, JAOCS33, 156–163 (1956).

    Article  CAS  Google Scholar 

  20. Khan, N. A., W. E. Tolberg, D. H. Wheeler and W. O. Lundberg, JAOCS31, 460–466 (1954).

    Article  CAS  Google Scholar 

  21. Hall, G. E., and D. G. Roberts, J. Chem. Soc. (B)1966, 1109–1112.

  22. Forbes, E. J., and J. Griffiths, Chem. Commun. 427–428 (1967).

  23. Gollnick, K., International Symposium on Reaction of Oxygen With Organic Compounds, San Francisco, 1967, Abstracts, Part 2, p. 383–412.

  24. Higgins, R., C. S. Foote and H. Cheng, Ibid., Abstracts, Part 2, p. 672–696.

  25. Arbuzov, Y. A., Russian Chem. Rev.34, 558–574 (1965).

    Article  Google Scholar 

  26. Schönberg, A., Ann. Chem.518, 299–302 (1935).

    Google Scholar 

  27. Schenck, G. O., Naturwissenchaften35, 28 (1948).

    Article  CAS  Google Scholar 

  28. Kasha, M., “Light and Life,” The Johns Hopkins Press, Baltimore, 1961, p. 31–64.

    Google Scholar 

  29. Mousseron-Canet, M., J. C. Mani and J. P. Dalle, Bull. Soc. Chim.1967, 608–612.

  30. Claes, Hedwig, Z. Naturforsch.16b, 445–454 (1961).

    CAS  Google Scholar 

  31. Foote, C. S., and R. W. Denny, J. Am. Chem. Soc.90, 6233–6235 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Rawls, H.R., Van Santen, P.J. A possible role for singlet oxygen in the initiation of fatty acid autoxidation. J Am Oil Chem Soc 47, 121–125 (1970). https://doi.org/10.1007/BF02640400

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02640400

Keywords

Navigation