Skip to main content
Log in

The enzymatic hydrolysis of triglyceride-phospholipid mixtures in an organic solvent

  • Published:
Journal of the American Oil Chemists’ Society

Abstract

The abilities of four commercially available lipolytic enzymes [three immobilized lipases—Lipozyme IM-20, SP-435 (Novo Biolabs, Danbury, CT), and AY-30/Celite (Amano Enzyme Co., Ltd., Troy, VA)—and a nonimmobilized Amano phospholipase B preparation] to hydrolyze mixtures of triacylglycerols (TG) and phospholipids (PL) were determined. All of the lipases hydrolyzed both types of substrates in water, with maximum rates of TG hydrolysis exceeding those of PL hydrolysis by between 20- and 200-fold. The phospholipase B preparation was inactive against both TG and PL in water. All the enzymes showed some activity against lipids in hexane. The amount of activity was sharply dependent on the amount of water added to the reaction. Lipozyme IM-20 and AY-30/Celite hydrolyzed both TG and PL in hexane. Their estimated initial activities were between 10- and 100-fold lower than those in water. Complete hydrolysis of the TG (measured as the hydrolysis of at least one ester bond in each molecule) was achieved, whereas only 40–60% of the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were hydrolyzed. Lipase SP-435 was inactive against TG in hexane but hydrolyzed PC at a rate comparable to that seen in water, and it achieved complete hydrolysis of this substrate. Amano phospholipase B was inactive against TG in hexane but completely hydrolyzed the PC. The abilities of the enzymes to hydrolyze the TG, PC, and PE components of soybean soapstock, a by-product of edible oil production, were also examined. Lipozyme IM-20 hydrolyzed all the TG and a fraction of the PL in soapstock. SP-435 and AY-30/Celite were active only on soapstock that had been acidified prior to being dissolved in hexane. SP-435 displayed significant activity only toward PE under these conditions, whereas AY-30/Celite was active only toward TG. Phospholipase B was inactive against soapstock in hexane. The identity of the acid used in the acidification of soapstock affected the degree of hydrolysis by AY-30/Celite, with nitric and hydrochloric acids giving the best activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brockerhoff, H., and R.G. Jensen,Lipolytic Enzymes, Academic Press, New York, 1974.

    Google Scholar 

  2. Borgstrom, B., and H.L. Brockman (eds.),Lipases, Elsevier, New York, 1984.

    Google Scholar 

  3. Alberghina, L., R.D. Schmid and R. Verger (eds.),Lipases: Structure, Mechanism and Genetic Engineering, GBF Monographs, Vol. 16, VCH Publishers, New York, 1991.

    Google Scholar 

  4. Zaks, A., and A. Klibanov,Proc. Natl. Acad. Sci. USA 82:3192 (1985).

    Article  CAS  Google Scholar 

  5. Dordick, J.S., inApplied Biocatalysis, Vol. 1, edited by H.W. Blanch, and D.S. Clark, Marcel Dekker, Inc., New York, 1991, pp. 1–51.

    Google Scholar 

  6. Zaks, A., inBiocatalysts for Industry, edited by J.S. Dordick, Plenum, New York, 1991, pp. 161–180.

    Google Scholar 

  7. Laboureur, P., and M. Labrousse,Compt. Rend. 259:4394 (1964).

    CAS  Google Scholar 

  8. de Haas, G.H., L. Sarda and J. Roger,Biochem. Biophys. Acta 106:638 (1965).

    Google Scholar 

  9. Slotboom, A.J., G.H. de Haas, P.P.M. Bonsen, G.J. Burbach-Westerhuis and L.L.M. Van Beenen,Chem. Phys. Lipids 4:15 (1970).

    Article  CAS  Google Scholar 

  10. Shirai, K., R.L. Barnhart and R.L. Jackson,Biochem. Biophys. Research Commun. 100:591 (1981).

    Article  CAS  Google Scholar 

  11. Van Oort, M.G., A.M.Th.J. Deveer, R. Dijkman, M. Tjeenk, H.M. Verheij, G.H. deHaas, E. Wenkzig and F. Gotz,Biochemistry 28:9278 (1989).

    Article  Google Scholar 

  12. Enholm, C., W. Shaw, H. Greten and W.V. Brown,J. Biol. Chem. 250:6756 (1975).

    Google Scholar 

  13. Jensen, G.L., B. Daggy and A. Bensadoun,Biochim. Biophys. Acta 710:464 (1982).

    CAS  Google Scholar 

  14. Slotboom, A.J., H.M. Verheij and G.H. de Haas,Chem. Phys. Lipids 11:295 (1973).

    Article  CAS  Google Scholar 

  15. Cox, J.W.,Fed. Proc. 36:852 (1977).

    Google Scholar 

  16. Hirashima, Y., A.A. Farooqui, E.J. Murphy and L.A. Horrocks,Lipids 25:344 (1990).

    Article  CAS  Google Scholar 

  17. Van Middlesworth, F., M. Lopez, M. Zweerink, A.M. Edison and K. Wilson,J. Org. Chem. 57:4753 (1992).

    Article  Google Scholar 

  18. Sarney, D.B., G. Fregapane and E.N. Vulfson,J. Am. Oil Chem. Soc. 71:93 (1994).

    Article  CAS  Google Scholar 

  19. Yagi, T., T. Nakanishi, Y. Yoshizawa and F. Fukui,J. Ferment. Bioeng. 69:23 (1990).

    Article  CAS  Google Scholar 

  20. Svensson, I., P. Adlercreutz and B. Mattiasson,Appl. Microbiol. Biotechnol. 33:255(1990).

    Article  CAS  Google Scholar 

  21. Svensson, I., P. Adlercreutz and B. Mattiasson,J. Am. Oil Chem. Soc. 69:986 (1992).

    Article  CAS  Google Scholar 

  22. Brockerhoff, H., P.C. Schmidt, J.W. Fong and L.J. Tirri,Lipids 11:421 (1976).

    Article  CAS  Google Scholar 

  23. Yoshimoto, T., M. Nakata, S. Yamaguchi, T. Funada, Y. Saito and Y. Inada,Biotechnol. Lett. 8:771 (1986).

    Article  CAS  Google Scholar 

  24. Mutua, L.N., and C.C. Akoh,J. Am. Oil Chem. Soc. 70:125 (1993).

    Article  CAS  Google Scholar 

  25. Totani, Y., and S. Hara, Ibid.:848 (1991).

    CAS  Google Scholar 

  26. Haas, M.J., D.J. Cichowicz, J. Phillips and R. Moreau, Ibid.:111 (1993).

    Article  CAS  Google Scholar 

  27. Haas, M.J., K. Scott, W. Jun and G. Janssen, Ibid.:483 (1994).

    Article  CAS  Google Scholar 

  28. Snyder, H.E., and T.W. Kwon (eds.),Soybean Utilization, Van Nostrand Reinhold Co., New York, 1987, pp. 110–112.

    Google Scholar 

  29. Haas, M.J., D.J. Cichowicz and D.G. Bailey,Lipids 27:571 (1992).

    Article  CAS  Google Scholar 

  30. Moreau, R.A., P.T. Asmann and H.A. Norman,Phytochemistry 29:2461 (1990).

    Article  CAS  Google Scholar 

  31. Brady, L., A.M. Brzozowski, Z.S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J.P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim and U. Menge,Nature 343:767 (1990).

    Article  CAS  Google Scholar 

  32. Grochulski, P., L. Yunge, J.D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin and M. Cygler,J. Biol. Chem. 268:12843 (1993).

    CAS  Google Scholar 

  33. Uppenberg, J., M.T. Hansen, S. Patkar and T.A. Jones,Structure 2:293 (1994).

    Article  CAS  Google Scholar 

  34. Brzozowski, A.M., U. Derewenda, Z.S. Derewenda, G.G. Dodson, D.M. Lawson, J.P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S.A. Patkar and L. Thim,Nature 351:491 (1991).

    Article  CAS  Google Scholar 

  35. Derewenda, U., A.M. Brzozowski, D.M. Lawson and Z.S. Derewenda,Biochemistry 31:1532 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Haas, M.J., Cichowicz, D.J., Jun, W. et al. The enzymatic hydrolysis of triglyceride-phospholipid mixtures in an organic solvent. J Am Oil Chem Soc 72, 519–525 (1995). https://doi.org/10.1007/BF02638851

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02638851

Key words

Navigation