Skip to main content
Log in

Mechanisms of somatic embryogenesis in cell cultures: Physiology, biochemistry, and molecular biology

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

One of the most characteristic cell functions in plants is totipotency. Somatic embryogenesis can be regarded as a model system for the investigation of mechanisms of totipotency, because a high frequency and synchronous embryogenic system from single somatic cells has been established in carrot suspension cultures. Four phases are recognized in this process, and several molecular markers, viz. polypeptides, mRNAs, antigens against monoclonal antibodies, can be detected during the expression of totipotency, but they disappear during its loss. Four organ-specific genes have been isolated from hypocotyls and roots by differential screening. They were expressed preferentially after the globular-heart stages of embryogenesis, and were strongly suppressed by auxin. A CEM 1 gene was isolated by differential screening of embryogenic cell clusters. This gene was expressed strongly and transiently during the proglobular and globular stages. The sequence of CEM 1 was found to encode a polypeptide showing high homology to the elongation factor isolated from eucaryotic cells. Thus good progress is being made in understanding the basic mechanisms of somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borkird, C.; Choi, J. H.; Jin, Z., et al. Developmental regulation of embryonic genes in plant. Proc. Natl. Acad. Sci. USA 85:6399–6403; 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Chen, J.; Varner, J. E. Isolation and characterization of cDNA clones for carrot extension and a proline-rich 33-kDa protein. Proc. Natl. Acad. Sci. USA 82:4399–4403; 1985.

    Article  PubMed  CAS  Google Scholar 

  3. Chibbar, R. N.; Polowick, P. L.; Newsted, W. J., et al. Identification and isolation of a unique esterase from the medium of non-embryogenic cell line of cultured carrot cells. Plant Cell Tissue Organ Cult. 18:47–53; 1989.

    Article  CAS  Google Scholar 

  4. Choi, J. H.; Liu, L. S.; Borkird, C., et al. Isolation of cDNA clones for rare embryo-specific antigens in carrot cell cultures. Proc. Natl. Acad. Sci. USA 84:1906–1910; 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Franz, G.; Hatzopoulos, P.; Jones, T. J., et al. Molecular and genetic analysis of an embryogenic gene, DC 8, fromDaucus carota L. Mol. Gen. Genet. 218:143–151; 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Fujimura, T.; Komamine, A. Synchronization of somatic embryogenesis in a carrot cell suspension culture. Plant Physiol. 64:162–164; 1979.

    PubMed  CAS  Google Scholar 

  7. Fujimura, T.; Komamine, A. The serial observation of embryogenesis in a carrot cell suspension culture. New Phytol. 86:213–218; 1980.

    Article  Google Scholar 

  8. Fujimura, T.; Komamine, A. Involvement of endogenous auxin in somatic embryogenesis in a carrot cell suspension culture. Z. Pflanzenphysiol. 95:13–19; 1979.

    CAS  Google Scholar 

  9. Fujimura, T.; Komamine, A. Effects of growth regulators on embryogenesis in a carrot suspension culture. Plant. Sci. Lett. 5:359–364; 1975.

    Article  CAS  Google Scholar 

  10. Hong, J. C.; Nagao, R. T.; Key, J. L., et al. Characterization and sequence analysis of a developmentally regulated putative cell wall protein gene isolated from soybean. J. Biol. Chem. 262:8367–8376; 1987.

    PubMed  CAS  Google Scholar 

  11. Lo Schiavo, F. L.; Giuliano, G.; Sung, Z. R. Characterization of a temperature-sensitive carrot cell mutant impaired in somatic embryogenesis. Plant. Sci. 54:157–164; 1988.

    Article  Google Scholar 

  12. Nomura, K.; Komamine, A. Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79:988–991; 1985.

    Article  PubMed  CAS  Google Scholar 

  13. Reinert, J. Untersuchungen uber die Morphogenese an Gewebekulturen. Ber. Dtsch. Bot. Ges. 71:15; 1958.

    Google Scholar 

  14. Smith, J. A.; Krauss, M. R.; Borkird, C., et al. A nuclear protein associated with cell divisions in plants. Planta 174:462–472; 1988.

    Article  CAS  Google Scholar 

  15. Steward, F. C.; Mapes, M. O.; Mears, K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am. J. Bot. 45:705–708; 1958.

    Article  Google Scholar 

  16. Sung, Z. R.; Okimoto, R. Embryonic proteins in somatic embryos of carrot. Proc. Natl. Acad. Sci. USA 78:3683–3687; 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Sung, Z. R.; Okimoto, R. Coordinate gene expression during somatic embryogenesis in carrot. Proc. Natl. Acad. Sci. USA 80:2661–2665; 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Wilde, H. D.; Nelson, W. S.; Booij, H., et al. Gene-expression programs in embryogenic and non-embryogenic carrot cultures. Planta 176:205–211; 1988.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in the Session-in-Depth Developmental Biology of Embryogenesis at the 1991 World Congress on Cell and Tissue Culture, Anaheim, California, June 16–20, 1991.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komamine, A., Kawahara, R., Matsumoto, M. et al. Mechanisms of somatic embryogenesis in cell cultures: Physiology, biochemistry, and molecular biology. In Vitro Cell Dev Biol - Plant 28, 11–14 (1992). https://doi.org/10.1007/BF02632185

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632185

Key words

Navigation