Skip to main content
Log in

Concomitant proliferation and formation of a stratified epithelial sheet by explant outgrowth of epidermal keratinocytes from adult mice

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A chemically defined medium containing 1.2 mM Ca2+ has been developed for the culture of primary epidermal keratinocytes from untreated adult mice such that proliferation is accompanied by the formation of desmosomes and stratification. Cultured cutaneous explants of 1 mm2 from the backs of untreated, control, and carcinogen-exposed mice all demonstrated epithelial outgrowth within 1 wk, and by 5 wk approached confluence with characteristics of terminal differentiation such as desmosomes and stratification. Addition of 12-O-tetradecanoylphorbol-13-acetate (TPA) to the medium in concentrations of 0.001, 0.01, and 0.1 µg/ml resulted in a delay of approximately 1 wk in the outgrowth of the explants compared with the acetone controls and in a 30% decrease in the diameter of the epithelial outgrowth at 3 wk. The inhibition in outgrowth was overcome at higher concentrations (0.5, 1.0, and 10 µg/ml TPA). No obvious differences in morphology or in the rate of epidermal outgrowth within a 5-wk interval among explants from normal untreated epidermis, epidermis from mice treated with acetone, or epidermis from mice treated with an initiating application of 7,12-dimethylbenz[a]anthracene were observed. The defined composition of this medium and its ability to support reproducibly and conveniently both proliferation and differentiation of normal as well as treated primary adult murine epidermal cells suggest that it should be useful for a number of studies not previously possible that are relevent to the biology of the skin, to toxicology, and to carcinogenesis in the murine model system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumberg, P. M. Protein kinase C as the receptor for the phorbol ester tumor promoters: Sixth Rhodes Memorial Award Lecture. Cancer Res. 48:1–8; 1988.

    PubMed  CAS  Google Scholar 

  2. Bowser, P. A.; Nugteren, D. H.; White, R., et al. Identification, isolation and characterization of epidermal lipids containing linoleic acid. Biochim. Biophys. Acta 834:419–428; 1985.

    PubMed  CAS  Google Scholar 

  3. Boyce, S. T.; Ham, R. G. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J. Invest. Dermatol. 81:33S-40S; 1983.

    Article  PubMed  CAS  Google Scholar 

  4. DiGiovanni, J.; Gill, R. D.; Nettikumara, A. N., et al. Effect of extracellular calcium concentration on the metabolism of polycyclic aromatic hydrocarbons by cultured mouse keratinocytes. Cancer Res. 49:5567–5574; 1989.

    PubMed  CAS  Google Scholar 

  5. Dunn, J. A.; Jeng, A. Y.; Yuspa, S. H., et al. Heterogeneity of (3H)phorbol 12, 13-dibutyrate binding in primary mouse keratinocytes at different stages of maturation. Cancer Res. 45:5540–5546; 1985.

    PubMed  CAS  Google Scholar 

  6. Eckert, R. L.; Green, H. Cloning of cDNAs specifying vitamin A-responsive human keratins. Proc. Natl. Acad. Sci. USA 81:4321–4325; 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Elias, P. M.; Brown, B. E.; Ziboh, V. A. The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J. Invest. Dermatol. 74:230–233; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Elias, P. M.; Cooper, E. R.; Korc, A., et al. Percutaneous transport in relation to stratum corneum structure and lipid composition. J. Invest. Dermatol. 76:297–301; 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Fischer, S. M. Use of murine keratinocyte culture in studying molecular and cellular aspects of transformation. In: Webber, M. M., ed. In vitro models for cancer research, vol. 3. Boca Raton, FL: CRC Press; 1985:275–300.

    Google Scholar 

  10. Fischer, S. M.; Viaje, A.; Mills, G. D., et al. Explant methods for epidermal cell culture. In: Prescott, D., ed. Methods in cell biology, vol. 21A. New York: Academic Press; 1980:207–227.

    Google Scholar 

  11. Fuchs, E.; Green, H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625; 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Furstenburger, G.; Gross, M.; Schweizer, J., et al. Isolation, characterization and in vitro cultivation of subfractions of neonatal mouse keratinocytes: effects of phorbol esters. Carcinogenesis 7:1745–1753; 1986.

    Article  Google Scholar 

  13. Fusenig, N. E.; Samsel, W. Growth promoting activity of phorbol ester TPA on cultured mouse skin keratinocytes, fibroblasts, and carcinoma cells. In: Slaga, T. J.; Sivak, A.; Boutwell, R. K., eds. Carcinogenesis: mechanisms of tumor promotion and cocarcinogenesis, vol. 2. New York: Raven Press; 1968:203–220.

    Google Scholar 

  14. Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Hansen, H. S.; Jensen, B. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with linoleate, arachidonate, columbinate, and α-linoleate. Biochim. Biophys. Acta 834:357–363; 1985.

    PubMed  CAS  Google Scholar 

  16. Hecker, E. Structure-activity relationships in diterpene esters irritant and cocarcinogenic to mouse skin. In: Slaga, T. J.; Sivak, A.; Boutwell, R. K., eds. Carcinogenesis: mechanisms of tumor promotion and cocarcinogenesis, vol. 2. New York: Raven Press; 1978:11–48.

    Google Scholar 

  17. Hennings, H.; Holbrook, K. Calcium regulation of cell-cell contacts and differentiation of epidermal cells in culture. Exp. Cell Res. 143:127–142; 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Hennings, H.; Holbrook, K.; Yuspa, S. H. Factors influencing calcium-induced terminal differentiation in cultured mouse epidermal cells. J. Cell Physiol. 116:265–281; 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Hennings, H.; Michael, D.; Cheng, C., et al. Calcium regulation of growth and differentiation in mouse epidermal cells in culture. Cell 19:245–254; 1980.

    Article  PubMed  CAS  Google Scholar 

  20. Kano-Sueoka, T.; Errick, J. E. Effect of phosphoethanolamine and ethanolamine on growth of mammary carcinoma cells in culture. Exp. Cell Res. 136:137–145; 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Kano-Sueoka, T.; Cohen, D. M.; Yamaizumi, Z., et al. Phosphoethanolamine as a growth factor of a mammary carcinoma cell line of rat. Proc. Natl. Acad. Sci. USA 76:5741–5744; 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Kawamura, H.; Strickland, J. E.; Yuspa, S. H. Association of resistance to terminal differentiation with initiation of carcinogenesis in adult mouse epidermal cells. Cancer Res. 45:2748–2757; 1985.

    PubMed  CAS  Google Scholar 

  23. Klein-Szanto, A. J. P.; Major, S. K.; Slaga, T. J. Induction of dark keratinocytes by 12-O-tetradecanoylphorbol-13-acetate and mezerein as an indicator of tumor promoting efficiency. Carcinogenesis 1:399–406; 1980.

    Article  PubMed  CAS  Google Scholar 

  24. Kopan, R.; Fuchs, E. The use of retinoic acid to probe the relationship between hyperproliferation-associated keratins and cell proliferation in normal and malignant epidermal cells. J. Cell Biol. 109:295–307; 1989.

    Article  PubMed  CAS  Google Scholar 

  25. Kopelovich, L.; Bias, N. E. Tumor promoter induces loss of anchorage dependence in human skin fibroblasts from individuals genetically predisposed to cancer. Exp. Cell Biol. 48:207–217; 1980.

    PubMed  CAS  Google Scholar 

  26. Kulesz-Martin, M. Differential effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) on normal, initiated, and transformed cells of a single mouse keratinocyte lineage. In: Cerutti, P. A.; Nygaard, O. F.; Simic, M. G., eds. Anticarcinogenesis and radiation protection. New York: Plenum Publishing; 1987:221–225.

    Google Scholar 

  27. Lechner, J. F.; Haugen, A. A.; McClendon, I. H., et al. Clonal growth of normal adult human bronchial epithelial cells in a serum-free medium. In Vitro 18:633–642; 1982.

    PubMed  CAS  Google Scholar 

  28. Lehninger, A. L.; Biochemistry. New York: Worth Publishers; 1975:281–282, 300.

    Google Scholar 

  29. Little, J. B.; Nagasawa, H.; Weichselbaum, R. R., et al. Differing patterns of cytotoxicity of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate in various human cell strains. Carcinogenesis 6:1703–1708; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Marcelo, C. L.; Madison, K. C. Regulation of the expression of epidermal keratinocyte proliferation and differentiation by vitamin A analogs. Arch. Dermatol. Res. 276:381–389; 1984.

    Article  PubMed  CAS  Google Scholar 

  31. McKeehan, W. L.; Barnes, D.; Reid, L., et al. Frontiers in mammalian cell culture. In Vitro Cell. Dev. Biol. 26:9–23; 1990.

    Article  PubMed  CAS  Google Scholar 

  32. McKeehan, W. L.; McKeehan, K. A.; Hammond, S. L., et al. Improved medium for clonal growth of human diploid fibroblasts at low concentrations of serum proteins. In Vitro 13:399–416; 1977.

    Article  PubMed  CAS  Google Scholar 

  33. Miller, C. C.; Ziboh, V. A. Induction of epidermal hyperproliferation by topicaln-3 polyunsaturated fatty acids on guinea pig skin linked to decreased levels of 13-hydroxyoctadecadienoic acid (13-HODE). J. Invest. Dermatol. 94:353–358; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Miller, D. R.; Viaje, A.; Rotstein, J., et al. Induction of terminal differentiation-resistant epidermal cells in mouse skin and in papillomas by different initiators during two-stage carcinogenesis. Cancer Res. 49:410–414; 1989.

    PubMed  CAS  Google Scholar 

  35. Morris, R. J.; Fischer, S. M.; Slaga, T. J. Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are distinct cell populations. J. Invest. Dermatol. 34:277–281; 1985.

    Article  Google Scholar 

  36. Morris, R. J.; Fischer, S. M.; Slaga, T. J. Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen. Cancer Res. 46:3061–3066; 1986.

    PubMed  CAS  Google Scholar 

  37. Morris, R. J.; Tacker, K. C.; Baldwin, J. K., et al. A new medium for adult murine epidermal cells: application to experimental carcinogenesis. Cancer Lett. 34:297–304; 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Naylor, M.; Cameron, G.; Morris, R., et al. Comparison of eicosanoid metabolism of human and murine keratinocytes in vitro. Proc. Am. Assoc. Cancer Res. 31:154; 1990.

    Google Scholar 

  39. Peehl, D. M.; Ham, R. G. Clonal growth of human keratinocytes with small amounts of dialyzed serum. In Vitro 16:526–538; 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Pera, M. F.; Gorman, P. A. In vitro analysis of multistage epidermal carcinogenesis: development of indefinite renewal capacity and reduced growth factor requirements in colony-forming keratinocytes precedes malignant transformation. Carcinogenesis 5:671–682; 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Potten, C. S.; Morris, R. J. Epithelial stem cells in vivo. J. Cell Sci. Suppl. 10:45–62; 1988.

    PubMed  CAS  Google Scholar 

  42. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344; 1975.

    Article  PubMed  CAS  Google Scholar 

  43. Rice, R. H.; LaMontagne, A. D.; Petito, C. T., et al. Differentiation of cultured epithelial cells: response to toxic agents. Environ. Health Perspect. 80:239–246; 1989.

    Article  PubMed  CAS  Google Scholar 

  44. Shapiro, S. S. Retinoids and epithelial differentiation. In: Sherman, M. I., ed. Retinoids and cell differentiation. Boca Raton, FL: CRC Press; 1986:29–59.

    Google Scholar 

  45. Slaga, T. J.; Nesnow, S. SENCAR mouse skin tumorigenesis. In: Milman, H. A.; Weisburgher, E. K., eds. Handbook of carcinogen testing. Park Ridge, NJ: Noyes Publication; 1985:230–250.

    Google Scholar 

  46. Smith, B. M.; Gindhart, T. D.; Colburn, N. H. Extracellular calcium requirement for promotion of transformation in JB6 cells. Cancer Res. 46:701–706; 1986.

    PubMed  CAS  Google Scholar 

  47. Tsao, M. C.; Walthall, B. J.; Ham, R. G. Clonal growth of normal human epidermal keratinocytes in a defined medium. J. Cell Physiol. 110:219–229; 1982.

    Article  PubMed  CAS  Google Scholar 

  48. Yuspa, S. H.; Morgan, D. L. Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature 293:72–74; 1981.

    Article  PubMed  CAS  Google Scholar 

  49. Yuspa, S. H.; Lichti, U.; Hennings, H. Chemical carcinogenesis studies in mouse epidermal cells cultures. In: Bernstein, I. A.; Seij, M., eds. Biochemistry of normal and abnormal epidermal differentiation. Basel: S. Karger; 1980:171–191.

    Google Scholar 

  50. Yuspa, S. H.; Ben, T.; Patterson, E., et al. Stimulated DNA synthesis in mouse epidermal cell cultures treated with 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 36:4062–4068; 1976.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, R.J., Haynes, A.C., Fischer, S.M. et al. Concomitant proliferation and formation of a stratified epithelial sheet by explant outgrowth of epidermal keratinocytes from adult mice. In Vitro Cell Dev Biol - Animal 27, 886–895 (1991). https://doi.org/10.1007/BF02630992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630992

Key words

Navigation