Skip to main content
Log in

Frontiers in mammalian cells culture

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

For the past 60 years, fundamental discoveries in eukaryotic biology using mammalian cell cultures have been significant but modest relative to the enormous potential. Combined with advances in technologies of cell and molecular biology, mammalian cell culture technology is becoming a major, if not essential tool, for fundamental discovery in eukaryotic biology. Reconstruction of the milieu for cells has progressed from simple salt solutions supporting brief survival of tissues outside the body to synthesis of the complete set of structurally defined nutrients, hormones and elements of the extracellular matrix needed to reconstruct complex tissues from cells. The isolation of specific cell types in completely defined environments reveals the true complexity of the mammalian cell and its environment as a dynamic interactive physiological unit. Cell cultures provide the tool for detection and dissection of the mechanism of action of cellular regulators and the genes that determine individual aspects of cell behavior. The technology underpins advances in virology, somatic cell genetics, endocrinology, carcinogenesis, toxicology, pharmacology, hematopoiesis and immunology, and is becoming a major tool in develomental biology, complex tissue physiology and production of unique mammalian cell-derived biologicals in industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schleiden, E. J. Beitrage zur phytogenesis. Arch. Anat. Physiol. Wiss. Med. (J. Muller), 1838:137–176; 1838.

    Google Scholar 

  2. Schwann, T.Mikroskopische Untersuchungen uber die Ubereinstimmung in der Struktur und dem Wachsthum der Tiere und Pflanzen. Ostwalds Klassiker der Exakten Wissenschaften. Berlin, Verlag der Sander schen Buchhandlung 176∶1910; 1839.

  3. Bernard, C.Le, cons sur les phenomenes de la vie, communs aux animaux et aux vegetaux. (2 Vols.). Paris, Bailliere; 1878–79.

    Google Scholar 

  4. Burrows, M. T. The cultivation of tissues of the chick embryo outside the body. J. Am. Med. 55:2057–2058; 1910.

    Google Scholar 

  5. Carrel, A. On the permanent life of tissues outside of the organism. J. Exp. Med. 15:516–528; 1912.

    Google Scholar 

  6. Carrel, A. Tissue culture and cell physiology. Physiol. Rev. 4:1–20; 1924.

    Google Scholar 

  7. Gey, G. O.; Thalheimer, W. Observation of the effects of insulin introduced into the medium of tissue culture. J. Am. Med. Assoc. 82:1609; 1924.

    Google Scholar 

  8. Gey, G. O. An improved technique for massive culture. Am. J. Cancer 17:752–756; 1933.

    Google Scholar 

  9. Gey, G. O.; Gey, M. C. The maintenance of human normal cells and tumor cells in continuous culture. Am. J. Cancer 27:45–76; 1936.

    Google Scholar 

  10. Gey, G. O.; Seegar, G. E.; Hellman, L. M. The production of a gonadotropic substance (prolan) by placental cells in culture. Science 88:306–307; 1938.

    Google Scholar 

  11. Gey, G. O.; Coffman, W. D.; Kubicek, M. T. Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12:264–265; 1952.

    Google Scholar 

  12. Ehrmann, R. L.; Gey, G. O. The growth of cells on a transparent gel of reconsitituted rat tail collagen. J. Natl. Cancer Inst. 16:1375–1415; 1956.

    PubMed  CAS  Google Scholar 

  13. Earle, W. R. Production of malignancy in vitro. IV. The mouse fibroblast cultures and changes seen in living cells. J. Natl. Cancer Inst. 4:165–212; 1943.

    CAS  Google Scholar 

  14. Hayflick, L.; Moorhead, P. S. The serial cultivation of human diploid strains. Exp. Cell Res. 25:585–621; 1961.

    Google Scholar 

  15. Todaro, G. J.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–313; 1963.

    PubMed  CAS  Google Scholar 

  16. Perry, R. P. The cellular sites of synthesis of ribosomal and 4S RNA. Proc. Natl. Acad. Sci. USA 48:2179–2186; 1962.

    PubMed  CAS  Google Scholar 

  17. Scherrer, K.; Darnell, J. E. Sedimentation characteristics of rapidly labelled RNA from HeLa cells. Biochem. Biophys. Res. Commun. 7:486–490; 1962.

    PubMed  CAS  Google Scholar 

  18. Penman, S.; Sherrer, K.; Becker, Y., et al. Polyribosomes in normal and poliovirus-infected HeLa cells and their relationship to messenger-RNA. Proc. Natl. Acad. Sci. USA 49:654–662; 1963.

    PubMed  CAS  Google Scholar 

  19. Steiner, D. F.; Oyer, P. E. The biosynthesis of insulin and a probable precursor of insulin by a human islet adenoma. Proc. Natl. Acad. Sci. 57:473–480; 1967.

    PubMed  CAS  Google Scholar 

  20. Steiner, D. F.; Clark, J. L.; Nolan, C., et al. Proinsulin and the biosynthesis of insulin. Recent Prog. Horm. Res. 25:207–282; 1969.

    PubMed  CAS  Google Scholar 

  21. Reich, E.; Franklin, R. M.; Shatkin, A. J., et al. Effect of actinomycin D on cellular nucleic acid synthesis and virus production. Science 134:556–557; 1961.

    PubMed  CAS  Google Scholar 

  22. Hsu, T. C. Mammalian chromosomes in vitro. J. Hered. 43:167–172; 1952.

    Google Scholar 

  23. Tjio, J. H.; Levan, A. The chromosome number of man. Separat ur Herediatas 42:1–6; 1956.

    Google Scholar 

  24. Huberman, J. A.; Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32:327–341; 1968.

    PubMed  CAS  Google Scholar 

  25. Caspersson, T.; Hulten, M.; Lindsten, J., et al. Identification of different Robertsonian translocations in man by quinarcine mustard fluorescence analysis. Hereditas 67:213–220; 1971.

    PubMed  CAS  Google Scholar 

  26. Wang, H. C.; Fedoroff, S. Banding in human chromosomes treated with trypsin. Nature New Biol. 235:52–54; 1972.

    PubMed  CAS  Google Scholar 

  27. Frye, L. D.; Edidin, M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J. Cell. Sci. 7:319–335; 1970.

    PubMed  CAS  Google Scholar 

  28. Temin, H. M.; Rubin, H. Characteristics of an assay for Rous Sarcoma virus and Rous Sarcoma cells in tissue culture. Virology 6:669–688; 1958.

    PubMed  CAS  Google Scholar 

  29. Dulbecco, R. Viral carinogenesis. Cancer Res. 21:975–980; 1961.

    PubMed  CAS  Google Scholar 

  30. Stoker, M.; MacPherson, I. Studies on transformation of hamster cells by polyoma virus in vitro. Virology 14:359–370; 1961.

    Google Scholar 

  31. Sato, G. The role of serum in cell culture. In: Litwak, G., ed.Biochemical Acions of Hormones, Vol. 3, Academic Press, NY; 1975:391–396.

    Google Scholar 

  32. Barnes, D.; Sirbasku, D., eds.,Peptide Growth Factors, Methods Enzymol., Vols. 146, 147. Academic Press, NY; 1987.

    Google Scholar 

  33. Metcalf, D.; Moore, M. A. S., eds,Hematopoietic Cells, North-Holland. Amsterdam (1971).

    Google Scholar 

  34. Clark, S. C.; Kamen, R. The human hematopoietic colony-stimulating factors. Science 236:1229–1237; 1987.

    PubMed  CAS  Google Scholar 

  35. Pestka, S., ed. Interferons.Methods Enzymol. 79; 1981.

  36. Sabato, G. D.; Langone, J. J.; Van Vunakis, H., eds. Immunochemical techniques.tMethods Enzymol. 116H; 1985.

  37. Clemens, M. J.; Morris, A. G.; Gearing, A. J. H., eds.Lymphokines and Interferons, IRL Press. Oxford; 1987.

    Google Scholar 

  38. Webb, D. R.; Pierce, C. W.; Cohen, S., eds.Molecular Basis of Lymphokine Action, Humana Press, NY; 1988.

    Google Scholar 

  39. Hayashi, I.; Sato, G. Replacement of serum by hormones permits growth of cells in a defined medium. Nature 259:132–134; 1976.

    PubMed  CAS  Google Scholar 

  40. Barnes, D.; Sato, G. Serum-free culture: a unifying approach. Cell 22:649–655; 1980.

    PubMed  CAS  Google Scholar 

  41. Barnes, D. W.; McKeehan, W. L.; Sato, G. H. Cellular endocrinology: integrated physiology in vitro. In Vitro Cell. Devel. Biol. 23:659–662; 1987.

    CAS  Google Scholar 

  42. Bottenstein, J.; Hayashi, I.; Hutchings, S. The growth of cells in serum-free hormone-supplemented media. Methods Enzymol. 58:94–109; 1979.

    PubMed  CAS  Google Scholar 

  43. Sato, G.; Ross, R., eds.Hormones and Cell Culture, Cold Spring Harbor, NY; 1979.

  44. Sato, G. H.; Pardee, A. B.; Sirbasku, D. A., eds.Growth of Cells in Hormonally Defined Media, Cold Spring Harbor, NY; 1982.

  45. Barnes, D. W.; Sirbasku, D. A.; Sato, G. H., eds.Cell Culture Methods for Cell Biology, Vols. 1–4, Alan R. Liss, NY; 1984.

    Google Scholar 

  46. Mather, J., eds.Mammalian Cell Culture: The Use of Serum-Free Hormone-Supplemented Media, Plenum Press, NY; 1984.

    Google Scholar 

  47. Bottenstein, J. E.; Sato, G., eds.Cell Culture in the Neurosciences, Vol. 1–3, Plenum Press, NY; 1985.

    Google Scholar 

  48. Taub, M., ed.Tissue Culture of Epithelial Cells, Plenum Press, NY; 1985.

    Google Scholar 

  49. Varmus, H. Retroviruses. Science 240:1427–1435; 1988.

    PubMed  CAS  Google Scholar 

  50. Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497; 1975.

    PubMed  CAS  Google Scholar 

  51. Tonegawa, S. Nobel Lecture in physiology or medicine-1987. Somatic generation of immune diversity. In Vitro Cell. Devel. Biol. 24:253–265; 1988.

    CAS  Google Scholar 

  52. Hunter, T.; Cooper, J. A. Protein-tyrosine kinases. Annu. Rev. Biochem. 54:897–930; 1985.

    PubMed  CAS  Google Scholar 

  53. Bishop, J. M. Oncogenes. Sci. Am. 246:80–82; 1982.

    PubMed  CAS  Google Scholar 

  54. Weinberg, R. A. The action of oncogenes in the cytoplasm and nucleus. Science 230:770–776; 1985.

    PubMed  CAS  Google Scholar 

  55. Hunter, T. Oncogenes and proto-oncogenes: how do they differ? J. Natl. Cancer Inst. 73:773–786; 1984.

    PubMed  CAS  Google Scholar 

  56. McKeehan, W. L.; Adams, P. S.; Rosser, M. P. Direct mitogenic effects of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 44:1998–2010; 1984.

    PubMed  CAS  Google Scholar 

  57. McKeehan, W. L.; Adams, P. S. Assay of growth factors for prostate epithelial cells. J. Tissue Culture Methods 10:151–154; 1986.

    CAS  Google Scholar 

  58. Crabb, J. W.; Armes, L. G.; Carr, S. A., et al. Complete primary structure of prostatropin, a prostate epithelial cell growth factor. Biochemistry 25:4988–4993; 1986.

    PubMed  CAS  Google Scholar 

  59. McKeehan, W. L.; Adams, P. S.; Fast, D. Different hormonal requirements for androgen-independent growth of normal and tumor epithelial cells from rat prostate. In Vitro Cell. Devel. Biol. 23:147–152; 1987.

    CAS  Google Scholar 

  60. Ham, R. G.; McKeehan, W. L. Media and growth requirements. Methods Enzymol. 58:44–93; 1979.

    PubMed  CAS  Google Scholar 

  61. Ham, R. G. Survival and growth requirements of non-transformed cells. Handbook Exptl. Pharmacol. 57:13–88; 1981.

    Google Scholar 

  62. McKeehan, W. L.; McKeehan, K. A. Extracellular regulation of fibroblast multiplication: a direct kinetic approach to analysis of role of low molecular weight nutrients and serum growth factors. J. Supramol. Struct. Cell. Biochem. 15:83–110; 1981.

    PubMed  CAS  Google Scholar 

  63. Bettgar, W. J.; Ham, R. G. The nutrient requirements of cultured mammalian cells. Adv. Nutr. Res. 4:249–286; 1982.

    Google Scholar 

  64. Reid, L.; Jefferson, D. Cell culture studies using extracts of extracellular matrix to study growth and differentiation in mammalian cells. In: Mather, J., ed.Mammalian Cell Culture, Plenum Press, NY; 1984:239–280.

    Google Scholar 

  65. Reid, L. M.; Abren, S. L.; Montgomery, K. Extracellular matrix and hormonal regulation of synthesis and abundance of messenger RNAs in cultured liver cells. In: Arias, L. M.; Jakoby, W. B.; Popper, H., et al., eds.The Liver: Biology and Pathobiology, Raven Press; 1988∶717–737.

  66. Reid, L. M. Generic methods for defined hormonal and matrix conditions for studies of growth of gene expression in differentiated epithelial. In: Pollard, J. W.; Walker, J. M., eds.Methods in Molecular Biology, Vol. 5, Humana Press, Inc., in press, 1989.

  67. Sporn, M. B.; Todaro, G. J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303:878–880; 1980.

    PubMed  CAS  Google Scholar 

  68. Ross, R.; Raines, E. W.; Bowen-Pope; D. F. The biology of platelet-derived growth factor. Cell 46:155–169; 1986.

    PubMed  CAS  Google Scholar 

  69. Deuel, T. F. Polypeptide growth factors: roles in normal and abnormal cell growth. Annu. Rev. Cell Biol. 3:443–492; 1987.

    PubMed  CAS  Google Scholar 

  70. Stampfer, M. R. Cholera toxin stimulation of human mammary epithelial cells in culture. In Vitro 18:531–537; 1982.

    PubMed  CAS  Google Scholar 

  71. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343; 1975.

    PubMed  CAS  Google Scholar 

  72. Clayton, D. F.; Darnell, J. E., Jr. Changes in liver-specific compared to common gene transcription during primary culture of mouse hepatocytes. Mol. Cell. Biol. 3:1552–1561; 1983.

    PubMed  CAS  Google Scholar 

  73. Jefferson, D. M.; Clayton, D. F.; Darnell, J. E., Jr., et al. Postranscriptional modulation of gene expression in cultured rat hepatocytes. Mol. Cell. Biol. 4:1929–1934; 1984.

    PubMed  CAS  Google Scholar 

  74. Sporn, M. B.; Roberts, A. B.; Wakefield, L. M., et al. Transforming growth factor-beta: biological function and chemical structure. Science 233:532–534; 1986.

    PubMed  CAS  Google Scholar 

  75. Roberts, A. B.; Sporn, M. B. Transforming growth factor beta. Adv. Cancer Res. 51:107–145; 1988.

    PubMed  CAS  Google Scholar 

  76. Kan, M.; DiSorbo, D.; Hou, J., et al. High and low affinity binding of heparin-binding growth factor to a 130-kDa receptor correlates with stimulation and inhibition of growth of a differentiated human hepatoma cell. J. Biol. Chem. 263:11306–11313; 1988.

    PubMed  CAS  Google Scholar 

  77. Hoshi, H.; Kan, M.; Chen, J. K., et al. Comparative endocrinology-paracrinology-autocrinology of human adult large vessel endothelial and smooth muscle cells. In Vitro Cell. Devel. Biol. 24:309–320; 1988.

    CAS  Google Scholar 

  78. Kan, M.; Huang, J.; Mansson, P.-E., et al. Heparin-binding growth factor type one (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. Proc. Natl. Acad. Sci. USA 86:7432–7436; 1989.

    PubMed  CAS  Google Scholar 

  79. Puck, T. T., ed.The Mammalian Cell as a Microorganism, Holden-Day, Inc., San Francisco; 1975.

    Google Scholar 

  80. Fischer, A. Die bedeutung der aminosauren fur die gewelezellen in vitro. Acta. Physiol. Scand. 2:145–148; 1941.

    Google Scholar 

  81. White, P. R. Cultivation of animal tissues in vitro in nutrients of precisely known constitution. Growth 10:231–239; 1946.

    Google Scholar 

  82. Morgan, J. F.; Morton, H. J.; Parker, R. C. Nutrition of animal cells in tissue culture. Proc. Soc. Exp. Biol. Med. 73:1–8; 1950.

    PubMed  CAS  Google Scholar 

  83. Morton, H. J.; Pasieka, A. E.; Morgan, J. F. The nutrition of animal cells cultivated in vitro. J. Biophys. Biochem. Cytol. 2:589–596; 1956.

    PubMed  CAS  Google Scholar 

  84. Waymouth, C. A serum-free nutrient solution sustaining rapid and continuous proliferation of strain L (Earle) mouse cells. J. Natl. Cancer Inst. 17:315–325; 1956.

    PubMed  CAS  Google Scholar 

  85. Evans, V. J.; Bryant, J. C. McQuilkin, W. T., et al. Studies of nutrient media for tissue cells in vitro. Cancer Res. 16:87–94; 1956.

    PubMed  CAS  Google Scholar 

  86. Moore, G. E.; Gerner, R. E.; Franklin, H. A. Culture of normal human leukocytes. J. Am. Med. Assoc. 199:519–524; 1967.

    CAS  Google Scholar 

  87. Eagle, H. Nutrition needs of mammalian cells in tissue culture. Science 122:501–504; 1955.

    PubMed  CAS  Google Scholar 

  88. Eagle, H.; Piez, K. The population-dependent requirement by cultured mammalian cells for metabolites which they can synthesize. J. Exp. Med. 116:29–43; 1962.

    PubMed  CAS  Google Scholar 

  89. McKeehan, W. L.; Hamilton, W. G.; Ham, R. G. Selenium is an essential nutrient for growth of WI-38 diploid human fibroblasts. Proc. Natl. Acad. Sci. USA 73:2023–2027; 1976.

    PubMed  CAS  Google Scholar 

  90. Kano-Sueoka, T.; Cohen, D. M.; Yamaizumi, Z., et al. Phosphoethanolamine as a growth factor of a mammary carcinoma cell line of rat. Proc. Natl. Acad Sci. USA 76:5741–5744; 1979.

    PubMed  CAS  Google Scholar 

  91. Bettger, W. J.; Boyce, S. T.; Walthall, B. J., et al. Rapid clonal growth and serial passage of human diploid fibroblasts in a lipid-enriched synthetic medium supplemented with epidermal growth factor, insulin, and dexamethasone. Proc. Natl. Acad. Sci. USA 78:5588–5592; 1981.

    PubMed  CAS  Google Scholar 

  92. Tsao, M. C.; Walthall, B. J.; Ham, R.G. Clonal growth of normal human epidermal keratinocytes in a defined medium J. Cell. Physiol. 110:219–229; 1982.

    PubMed  CAS  Google Scholar 

  93. Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA. 81:5435–5439; 1984.

    PubMed  CAS  Google Scholar 

  94. Bettger, W. J.; McKeehan, W. L. Mechanisms of cellular nutrition. Physiol. Rev. 66:1–35; 1986.

    PubMed  CAS  Google Scholar 

  95. McKeehan, W. L.; McKeehan, K. A. Epidermal growth factor modulates extracellular Ca2+ requirement for multiplication of normal human skin fibroblasts. Exp. Cell Res. 123:397–400; 1979.

    PubMed  CAS  Google Scholar 

  96. McKeehan, W. L.; McKeehan, K. A. Serum factors modulate the cellular requirements of Ca2+, K+, Mg2+, phosphate ions, and 2-oxocarboxylic acids for multiplication of normal human fibroblasts. Proc. Natl. Acad. Sci. USA 77:3417–3421; 1980.

    PubMed  CAS  Google Scholar 

  97. Newsholme, E. A.; Crabtree, B.; Ardawi, M. S. The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci. Rep. 5:393–400; 1985.

    PubMed  CAS  Google Scholar 

  98. McKeehan, W. L. Glutaminolysis in animal cells. In: Morgan, M. J., ed.Carbohydrate Metabolism in Cultured Cells, Plenum, London, 1986:111–150.

    Google Scholar 

  99. McKeehan, W. L.; McKeehan, K. A.; Calkins, D. Extracellular regulation of fibroblast multiplication. Quantitative differences in nutrient and serum factor requirements for multiplication of normal and SV40-virus transformed human lung cells. J. Biol. Chem. 256:2973–2981; 1981.

    PubMed  CAS  Google Scholar 

  100. Salmon, W.; Daughaday, W. A hormonally-controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab. Clin Med. 49:825–836; 1957.

    PubMed  CAS  Google Scholar 

  101. Clemmons, D. R.; Van Wyk, J. J. Somatomedin: physiological control and effects on cell proliferation. In: Baserga, R., ed.Tissue Growth Factors, Handbook of Experimental Pharmacology. Springer-Verlag, New York, Vol. 57, 1981:161–208.

    Google Scholar 

  102. Froesch, E. R.; Schmid, C.; Schwander, J., et al. Actions of insulin-like growth factors. Annu. Rev. Physiol. 47:443–467; 1985.

    PubMed  CAS  Google Scholar 

  103. Sirbasku, D. A. Estrogen induction of growth factors specific for hormone-responsive mammary, pituitary, and kidney tumor cells. Proc. Natl. Acad. Sci. USA 75:3786–3790; 1978.

    PubMed  CAS  Google Scholar 

  104. James, R.; Bradshaw, R. A. Polypeptide growth factors. Annu. Rev. Biochem. 53:259–292; 1984.

    PubMed  CAS  Google Scholar 

  105. Burgess, W. H.; Maciag, T. The heparin-binding (fibroblast) growth factor family of proteins Annu. Rev. Biochem. 58:575–606; 1989.

    PubMed  CAS  Google Scholar 

  106. Rifkin, D. B.; Moscatelli, D. Recent developments in the cell biology of basic fibroblast growth factor. J. Cell Biol. 109:1–6; 1989.

    PubMed  CAS  Google Scholar 

  107. Rosenberg, R. D.; Lam, L. Correlation between structure and function of heparin. Proc. Natl. Acad. Sci. USA 76:1218–1222; 1979.

    PubMed  CAS  Google Scholar 

  108. Fedarko, N. S.; Conrad, H. E., A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells. J. Cell Biol. 102:587–599; 1986.

    PubMed  CAS  Google Scholar 

  109. Li, M. L.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    PubMed  CAS  Google Scholar 

  110. Vlodavsky, I.; Folkman, J.; Sullivan, R., et al. Endothelial cellderived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84:2292–2296; 1987.

    PubMed  CAS  Google Scholar 

  111. Spray, D. C.; Fujita, M.; Saez, J. C., et al. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures. J Cell Biol 105:541–551; 1987.

    PubMed  CAS  Google Scholar 

  112. Rojkind, M.; Gatmaitan, Z.; Mackensen, S., et al. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J. Cell. Biol. 87:255–263; 1980.

    PubMed  CAS  Google Scholar 

  113. Muschel, R.; Khoury, G.; Reid, L. M. Regulation of insulin mRNA abundance and adenylation: dependence on hormones and matrix substrata. Mol. Cell. Biol. 6:337–341; 1986.

    PubMed  CAS  Google Scholar 

  114. Kleinman, H. K.; Luckenbill-Edds, L.; Cannon, F. W., et al. Use of extracellular matrix components for cell culture. Anal. Biochem. 166:1–13; 1987.

    PubMed  CAS  Google Scholar 

  115. Ailenberg, M.; Tung, P. S.; Pelletier, M., et al. Modulation of Sertoli cell functions in the two-chamber assembly by peritubular cells and extracellular matrix. Endocrinology 122:2604–2612; 1988.

    PubMed  CAS  Google Scholar 

  116. Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48:549–554; 1987.

    PubMed  CAS  Google Scholar 

  117. Ruoslahti, E.; Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 238:491–497; 1987.

    PubMed  CAS  Google Scholar 

  118. Ignotz, R. A.; Endo, T.; Massague, J. Regulation of fibronectin and type I collagen mRNA levels by transforming growth factor-beta. J. Biol. Chem. 262:6443–6446; 1987.

    PubMed  CAS  Google Scholar 

  119. Chen, J. K.; Hoshi, H.; McKeehan, W. L. Transforming growth factor type beta specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells. Proc. Natl. Acad. Sci. USA 84:5287–5291; 1987.

    PubMed  CAS  Google Scholar 

  120. Ignotz, R. A.; Massague, J. Cell adhesion protein receptors as targets for transforming growth factor-beta action. Cell 51:189–197; 1987.

    PubMed  CAS  Google Scholar 

  121. Rizzino, A. Transforming growth factor-beta: multiple effects on cell differentiation and extracellular matrices. Devel. Biol. 130:411–422; 1988.

    CAS  Google Scholar 

  122. Puck, T. T.; Marcus, P. I. A rapid method for viable cell titration and clone production with HeLa cells in tissue culture. Proc. Natl. Acad. Sci. USA 41:432–437; 1955.

    PubMed  CAS  Google Scholar 

  123. Puck, T. T.; Marcus, P. I.; Cieciura, S. J. Clonal growth of mammalian cells in vitro. J. Exp. Med. 103:273–283; 1956.

    PubMed  CAS  Google Scholar 

  124. Ham, R. G.; Puck, T. T. Quantitative colonial growth of isolated mammalian cells. Methods Enzymol. 5:90–119; 1962.

    Google Scholar 

  125. Kao, F. T.; Puck, T. T. Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants, in Chinese hamster cells. Proc. Natl. Acad. Sci. USA 60:1275–1281; 1968.

    PubMed  CAS  Google Scholar 

  126. Thompson, L. H.; Mankovitz, R.; Baker, R. M., et al. Isolation of temperature-sensitive mutants of L-cells. Proc. Natl. Acad. Sci. USA 66:377–384; 1970.

    PubMed  CAS  Google Scholar 

  127. Choi, K. W.; Bloom, A. D. Cloning human lymphocytes in vitro. Nature 227:171–173; 1970.

    PubMed  CAS  Google Scholar 

  128. Konigsberg, I. R. Clonal analysis of myogenesis. Science 140:1273–1284; 1963.

    PubMed  CAS  Google Scholar 

  129. Coon, H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc. Natl. Acad. Sci. USA 55:66–73; 1966.

    PubMed  CAS  Google Scholar 

  130. Coon, H. G.; Cahn, R. D. Differentiation, in vitro: effects of Sephadex fractions of chick embryo extract. Science 153:1116–1119; 1966.

    PubMed  CAS  Google Scholar 

  131. Cahn, R. D.; Cahn, M. B. Heritability of cellular, differentiation: clonal growth and expression of differentiation in retinal pigment cells in vitro. Proc. Natl. Acad. Sci. USA 55:106–114; 1966.

    PubMed  CAS  Google Scholar 

  132. Ham, R. G. Cloning of mammalian cells. Met. Cell. Physiol. 5:37–74; 1972.

    Google Scholar 

  133. Sanford, K. K.; Earle, W. R.; Likely, G. D. The growth in vitro of single isolated cells. J. Natl. Cancer Inst. 9:229–246; 1948.

    Google Scholar 

  134. Harrison, R. G. Observations, on the living developing nerve fiber. Proc. Soc. Exp. Biol. Med. 4:140–143; 1907.

    Google Scholar 

  135. Harrison, R. G. The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. Exp. Zool. 9:787–848; 1910.

    Google Scholar 

  136. Sato, G.; Zaroff, L.; Mills, S. E. Tissue culture populations and their relation to the tissue of origin. Proc. Natl. Acad. Sci. USA 46:963–972; 1960.

    PubMed  CAS  Google Scholar 

  137. Schindler, R.; Day, M.; Fischer, G. A. Culture of neoplastic mast cells and their synthesis of 5-hydroxy-tryptamine and histamine in vitro. Cancer Res. 19:47–51; 1959.

    PubMed  CAS  Google Scholar 

  138. Thompson, E. B.; Tomkins, G. M.; Curran, J. F. Induction of tyrosine alpha-ketoglutarate transaminase by steroid hormones in a newly established tissue culture cell line. Proc. Natl. Acad. Sci. USA 56:296–303; 1966.

    PubMed  CAS  Google Scholar 

  139. Yaffe, D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc. Natl. Acad. Sci. USA 61:477–483; 1968.

    PubMed  CAS  Google Scholar 

  140. Leighton, J.; Estes, L. W.; Mansukhani, S., et al. A cell line derived from normal dog kidney (MDCK) exhibiting, qualities of papillary adenocarcinoma and of renal tubular epithelium. Cancer 26:1022–1028; 1970.

    PubMed  CAS  Google Scholar 

  141. Knowles, B. B.; Howe, C. C.; Aden, D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209:497–499; 1980.

    PubMed  CAS  Google Scholar 

  142. Buonassisi, V.; Sato, G.; Cohen, A. I. Hormone-producing cultures of adrenal and pituitary tumor origin. Proc. Natl. Acad. Sci. USA 48:1184–1190; 1962.

    PubMed  CAS  Google Scholar 

  143. Yasamura, Y.; Tashjian, A. H., Jr.; Sato, G. H. Establishment of four functional, clonal strains of animal cells in culture. Science 154:1186–1189; 1966.

    PubMed  CAS  Google Scholar 

  144. Mohit, B.; Sato, G. H. Improved in vitro survival of normal, functional spleen cells. Science 157:449–451; 1967.

    PubMed  CAS  Google Scholar 

  145. Augusti-Tocco, G.; Sato, G. Establishment of functional clonal, lines of neurons from mouse neuroblastoma. Proc. Natl. Acad. Sci. USA 64:311–315; 1969.

    PubMed  CAS  Google Scholar 

  146. Sato, G.; Augusti-Tocco, G.; Posner, M. Hormone-secreting and hormone-responsive cell cultures. Recent Prog. Horm. Res. 26:539–546; 1970.

    PubMed  CAS  Google Scholar 

  147. Rosenthal, M. D.; Wishnow R. M.; Sato, G. H. In vitro growth and differentiation of clonal populations of multipotential mouse cells derived from a transplantable testicular teratocarcinoma. J. Natl. Cancer Inst. 44:1001–1014; 1970.

    PubMed  CAS  Google Scholar 

  148. Sato, G., ed.Functionally Differentiated Cell Lines. Alan R. Liss, NY; 1981.

    Google Scholar 

  149. Hammond, S. L.; Ham, R. G.; Stampfer, M. R. Serum-free growth of human mammary epithelial cells: rapid clonal growth in defined medium and extended serial passage with pituitary extract. Proc. Natl. Acad. Sci. USA 81:5435–5439; 1984.

    PubMed  CAS  Google Scholar 

  150. Sanford, K. K.; Likely, G. D.; Earle, W. R. The development of variations in transplantability and morphology within a clone of mouse fibroblasts transformed to sarcoma-producing cells in vitro. J. Natl. Cancer Inst. 15:215–230; 1954.

    PubMed  CAS  Google Scholar 

  151. Abercrombie, M.; Heaysman, J. E. M. Observations on the social behavior of cells in tissue culture. Exp. Cell Res. 6:293–306; 1954.

    PubMed  CAS  Google Scholar 

  152. Stoker, M.; MacPherson, I. Studies on transformation of hamster cells by polyoma virus in vitro. Virology 14:359–370; 1961.

    Google Scholar 

  153. Todaro, G. J.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 17:299–313; 1963.

    PubMed  CAS  Google Scholar 

  154. MacPherson, I.; Montagnier, L. Agar suspension culture for the selective assay of cells transformed by polyoma virus. Virology 23:291–294; 1964.

    PubMed  CAS  Google Scholar 

  155. Holley, R. W.; Kiernan, J. A. “Contact inhibition” of cell division in 3T3 cells. Proc. Natl. Acad. Sci. USA 60:300–304; 1964.

    Google Scholar 

  156. Aaronson, S. A.; Todaro, G. J. Basis for the acquisition of malignant potential by mouse cells cultivated in vitro. Science 162:1024–1026; 1968.

    PubMed  CAS  Google Scholar 

  157. Pollack, R. E.; Green, H.; Todaro, G. J. Growth control in cultured cells: selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc. Natl. Acad. Sci. USA 60:126–133; 1968.

    PubMed  CAS  Google Scholar 

  158. Dulbecco, R. Topoinhibition and serum requirement of transformed and untransformed cells. Nature 227:802–806; 1970.

    PubMed  CAS  Google Scholar 

  159. Freedman, V. H.; Shin, S. L. Cellular tumorigenicity in nude mice: correlation with cell growth in semi-solid medium. Cell 3:355–359; 1974.

    PubMed  CAS  Google Scholar 

  160. Doolittle, R. F.; Hunkapiller, M. W.; Hood, L. E., et al. Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–277; 1983.

    PubMed  CAS  Google Scholar 

  161. Waterfield, M. D.; Scrace, G. T.; Whittle, N., et al. Plateletderived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304:35–39; 1983.

    PubMed  CAS  Google Scholar 

  162. Downward, J.; Yarden, Y.; Mayes, E., et al., Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527; 1984.

    PubMed  CAS  Google Scholar 

  163. Sherr, C. J.; Rettenmier, C. W.; Sacca, R., et al. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676; 1985.

    PubMed  CAS  Google Scholar 

  164. Stiles, C. D. The molecular biology of platelet-derived growth factor. Cell 33:653–655; 1983.

    PubMed  CAS  Google Scholar 

  165. Rollins, B. J.; Stiles, C. D. Regulation of c-myc and c-fos protooncogene expression by animal cell growth factors. In Vitro Cell. Devel. Biol. 24:81–84; 1988.

    CAS  Google Scholar 

  166. De Larco, J. E.; Todaro, G. J. Growth factors from murine sarcoma virus-transformed cells. Proc. Natl. Acad. Sci. USA 75:4001–4005; 1978.

    PubMed  Google Scholar 

  167. Derynck, R. Transforming growth factor-alpha: structure and biological activities. J. Cell. Biochem. 32:293–304; 1986.

    PubMed  CAS  Google Scholar 

  168. Cochran, B. H.; Zumstein, P.; Zullo, J., et al. Differentiation colony hybridization: molecular cloning from a zero data base. Methods Enzymol. 147:64–85; 1987.

    PubMed  CAS  Google Scholar 

  169. Scher, C. D.; Pledger, W. J. Identification of platelet-derived growth factor-modulated proteins. Methods Enzymol. 147:85–92; 1987.

    PubMed  CAS  Google Scholar 

  170. Okada, Y. The fusion of Ehrlich’s tumor cells caused by HVJ virus in vitro. Biken J. 1:103–110; 1958.

    Google Scholar 

  171. Harris, H. Behaviour of differentiated nuclei in heterokaryons of animal cells from different species. Nature 206:583–588; 1965.

    PubMed  CAS  Google Scholar 

  172. Pontecorvo, G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell Genet. 1:397–400; 1975.

    PubMed  CAS  Google Scholar 

  173. Ruddle, F. H. A new era in mammalian gene mapping: somatic cell genetics and recombinant DNA methodologies. Nature 294:115–120; 1981.

    PubMed  CAS  Google Scholar 

  174. Shows, T. B.; Sakaguchi, A. Y.; Naylor, S. L. Mapping the human genome, cloned genes, DNA polymorphisms, and inherited disease. Adv. Hum. Genet. 12:341–452; 1982.

    PubMed  CAS  Google Scholar 

  175. Ege, T.; Ringertz, N. R. Viability of cells reconstituted by virus-induced fusion of minicells with anucleate cells. Exp. Cell Res. 94:469–473; 1975.

    PubMed  CAS  Google Scholar 

  176. Fournier, R. E.; Ruddle, F. H. Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc. Natl. Acad. Sci. USA 74:319–323; 1977.

    PubMed  CAS  Google Scholar 

  177. Tunnacliffe, A.; Goodfellow, P. Attached cell antigen 28.3.7 mapping to human chromosome 15 characterizes TPA-induced differentiation of the promyelocytic HL-60 cell line to give macrophage/monocyte populations. EMBO J. 2:2007–2012; 1983.

    PubMed  Google Scholar 

  178. Saxon, P. J.; Srivatsan, E. S.; Leipzig, G. V., et al. Selective transfer of individual human chromosomes to recipient cells. Mol. Cell. Biol. 5:140–146; 1985.

    PubMed  CAS  Google Scholar 

  179. Sager, R. Genetic suppression of tumor formation. Adv. Cancer Res. 44:43–68; 1985.

    PubMed  CAS  Google Scholar 

  180. Harris, H. The genetic analysis of malignancy. J. Cell Sci. Suppl. 4:431–444; 1986.

    PubMed  CAS  Google Scholar 

  181. Stanbridge, E. J. Genetic regulation of tumorigenic expression in somatic cell hybrids, Klein, G., ed. Advances in Viral Oncology, Vol. 6, Raven Press, New York; 1987:83–102.

    Google Scholar 

  182. Stanbridge, E. J. Suppression of malignancy in human cells. Nature 260:17–20; 1976.

    PubMed  CAS  Google Scholar 

  183. Klinger, H. P.; Suppression of tumorigenicity. Cytogenet. Cell Genet. 32:68–84; 1982.

    PubMed  CAS  Google Scholar 

  184. Stanbridge, E. J. A case for human tumor-suppressor genes. Bioassays 3:252–255; 1985.

    CAS  Google Scholar 

  185. Klein, G. The approaching era of the tumor suppressor genes. Science 238:1539–1545; 1987.

    PubMed  CAS  Google Scholar 

  186. Weissman, B. E.; Saxon, P. J.; Pasquale, S. R., et al. Introduction of a normal human chromosome 11 into a Wilms’ tumor cell line controls its tumorigenic expression. Scinece 236:175–180; 1987.

    CAS  Google Scholar 

  187. Stanbridge, E. J. A genetic basis for tumour suppression. In: Brock, G.; Marsh, J., eds. CIBA Found. Symp. No. 142. John Wiley and Sons, New York, 1989:149–159.

    Google Scholar 

  188. Davidson, R. L., ed.Somatic Cell Hybridization, Raven Press, New York; 1974.

    Google Scholar 

  189. Weiss, M. C.; Sparkes, R. S.; Bertolotti, R. Expression of differentiated functions in hepatoma cell hybrids: IX extinction and reexpression of liver-specific enzymes in rat hepatoma-Chinese hamster fibroblast hybrids. Somatic Cell Genet. 1:27–40; 1975.

    PubMed  CAS  Google Scholar 

  190. Chin, A. C.; Fournier, R. E. A genetic analysis of extinction: trans-regulation of 16 liver-specific genes in hepatoma-fibroblast hybrid cells. Proc. Natl. Acad. Sci. USA 84:1614–1618; 1987.

    PubMed  CAS  Google Scholar 

  191. Blau, H. M.; Chiu, C. P.; Webster, C. Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–1180; 1983.

    PubMed  CAS  Google Scholar 

  192. Hardeman, E. C.; Chiu, C. P.; Minty, A., et al. The pattern of actin expression in human fibroblast x mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. Cell 47:123–130; 1986.

    PubMed  CAS  Google Scholar 

  193. Chin, A. C.; Fournier, R. E. Tissue-specific expresion of hepatic functions. Genetics aspects. Ann. N.Y. Acad. Sci. 478:120–130; 1986.

    PubMed  CAS  Google Scholar 

  194. Stoscheck, C. M.; Carpenter, G. Biology of the A-431 cell: a useful organism for hormone research. J. Cell. Biochem. 23:191–202; 1983.

    PubMed  CAS  Google Scholar 

  195. Cohen, S. Epidermal growth factor. Nobel Lecture in Physiology or Medicine-1986. In Vitro Cell. Devel. Biol. 23:239–246; 1987.

    CAS  Google Scholar 

  196. Carpenter, G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu. Rev. Biochem. 56:881–914; 1987.

    PubMed  CAS  Google Scholar 

  197. Yarden, Y.; Ulrich, A. Molecular analysis of signal transduction by growth factors. Biochemistry 27:3113–3119; 1988.

    PubMed  CAS  Google Scholar 

  198. Chao, M. V.; Bothwell, M. A.; Ross, A. H., et al. Gene transfer and molecular cloning of the human NGF receptor. Science 232:518–521; 1986.

    PubMed  CAS  Google Scholar 

  199. Robb, R. J.; Greene, W. C.; Rusk, C. M. Low and high affinity cellular receptors for interleukin 2. J. Exp. Med. 160:1126–1146; 1984.

    PubMed  CAS  Google Scholar 

  200. Yarden, Y.; Escobedo, J. A.; Kuang, W. J., et al. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 323:226–232; 1986.

    PubMed  CAS  Google Scholar 

  201. Dulak, N. C.; Temin, H. M. Multiplication-stimulating activity for chicken embryo fibroblasts from rat liver cell conditioned medium: a family of small polypeptides. J. Cell Physiol. 81:161–170; 1973.

    PubMed  CAS  Google Scholar 

  202. Dulak, N. C.; Temin, H. M. A partially purified polypeptide fraction from rat liver cell conditioned medium with multiplication-stimulating activity for embryo fibroblasts. J. Cell Physiol. 81:153–160; 1973.

    PubMed  CAS  Google Scholar 

  203. Greenstein, L. A.; Gaynes, L. A.; Romanus, J. A., et al. Purification of rat insulin-like growth factor II. Methods Enzymol. 146:259–269; 1987.

    PubMed  CAS  Google Scholar 

  204. Mroczkowski, B.; Reich, M.; Chen, K., et al. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity. Mol. Cell. Biol. 9:2771–2778; 1989.

    PubMed  CAS  Google Scholar 

  205. Wong, S. T.; Winchell, L. F.; McCune, B. K., et al. The TGF-alpha precursor expressed on the cell surface binds to the EGF receptor on adjacent cells, leading to signal transduction. Cell 56:495–506; 1989.

    PubMed  CAS  Google Scholar 

  206. Kawasaki, E. S.; Ladner, M. B.; Wang, A. M., et al. Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science 230:291–296; 1985.

    PubMed  CAS  Google Scholar 

  207. Derynck, R.; Jarrett, J. A.; Chen, E. Y., et al. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature 316:701–705; 1985.

    PubMed  CAS  Google Scholar 

  208. Lawrence, D. A.; Pircher, R.; Jullien, P. Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta-TGF under acidic conditions. Biochem. Biophys. Res. Commun. 133:1026–1034; 1985.

    PubMed  CAS  Google Scholar 

  209. Orlidge, A.; D’Amore, P. A. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105:1455–1462; 1987.

    PubMed  CAS  Google Scholar 

  210. Lyons, R. M.; Keski-Oja, J.; Moses, H. L. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J. Cell Biol. 106:1659–1665; 1988.

    PubMed  CAS  Google Scholar 

  211. March, C. J.; Mosley, B.; Larsen, A., et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315:641–647; 1985.

    PubMed  CAS  Google Scholar 

  212. Radeke, M. J.; Misko, T. P.; Hsu, C., et al. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325:593–597; 1987.

    PubMed  CAS  Google Scholar 

  213. Sims, J. E.; March, C. J.; Cosman, D., et al. cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241:585–589; 1988.

    PubMed  CAS  Google Scholar 

  214. Yamasaki, K.; Taga, T.; Hirata, Y., et al. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241:825–828; 1988.

    PubMed  CAS  Google Scholar 

  215. Leung, D. W.; Spencer, S. A.; Cachianes, G., et al. Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330:537–543; 1987.

    PubMed  CAS  Google Scholar 

  216. Boutin, J. M.; Jolicoeur, C.; Okamura, H., et al. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell 53:69–77; 1988.

    PubMed  CAS  Google Scholar 

  217. Schimke, R. T. Gene amplification in cultured animal cells. Cell 37:705–713; 1984.

    PubMed  CAS  Google Scholar 

  218. Gottesman, M. M.; Pastan, I. The multidrug transporter, a double-edged sword. J. Biol. Chem. 263:12163–12166; 1988.

    PubMed  CAS  Google Scholar 

  219. Mishra, N.; Dunkel, M.; Mehlman, eds.Mammalian Cell Transformation by Chemical Carcinogens. Senate Press, Inc., Princeton Junction, NJ; 1980.

    Google Scholar 

  220. Ames, B. N.; Durston, W. E.; Yamasaki, E., et al. Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. USA 70:2281–2285; 1973.

    PubMed  CAS  Google Scholar 

  221. International Conference on Practical In Vitro Toxicology, Food and Chemical Toxicology 24 (6–7):447–818; 1986.

    Google Scholar 

  222. Tennant, R. W.; Margolin, B. H.; Shelby, M. D., et al. Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science 236:933–941; 1987.

    PubMed  CAS  Google Scholar 

  223. Balls, M. 4th International Workshop on In Vitro Toxicology. Crieff, Perthshire, Scotland, September 8–12, 1986. Xenobiotica 18(6):615–616; 1988.

    Google Scholar 

  224. Goldberg, A. M.; Frazier, J. M. Alternatives to animals in toxicity testing. Scientific American 261:24–30; 1989.

    PubMed  CAS  Google Scholar 

  225. Nishizuka, Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334:661–665; 1988.

    PubMed  CAS  Google Scholar 

  226. Weinstein, I. B. Effects of phorbol esters in cell culture and their relevance to short-term assays for tumor promoters. In: Mishra, N.; Dunkel, V.; Mehlman, M., eds.Mammalian Cell Transformation by Chemical Carcinogens, Vol. 1, Senate Press, Princeton Junction, NJ; 1980:427–446.

    Google Scholar 

  227. Michaell, R. H., Drummond, A. H.; Downes, C. P., eds.Inositol Lipids in Cell Signalling, Academic Press, NY; 1989.

    Google Scholar 

  228. Hedrick, S. M.; Cohen, D. I.; Nielsen, E. A., et al. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 308:149–153; 1984.

    PubMed  CAS  Google Scholar 

  229. Yanagi, Y.; Yoshikai, Y.; Leggett, K., et al. A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature 308:145–149;1984.

    PubMed  CAS  Google Scholar 

  230. Stevens, L. C. Experimental production of testicular teratomas in mice. Proc. Natl. Acad. Sci. USA 52:654–661; 1964.

    PubMed  CAS  Google Scholar 

  231. Pierce, G. B. Teratocarcinoma: model for a developmental concept of cancer. Curr. Top. Dev. Biol. 2:223–246; 1967.

    PubMed  CAS  Google Scholar 

  232. Nicolas, J. F.; Jakob, H.; Jacob, F. Teratocarcinoma-derived cell lines and their use in the study of differentiation. In: Sato, G., ed.Functionally Differentiated Cell Lines. Alan R. Liss, NY; 1981:185–210.

    Google Scholar 

  233. Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156; 1981.

    PubMed  CAS  Google Scholar 

  234. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78: 7634–7638; 1981.

    PubMed  CAS  Google Scholar 

  235. Brinster, R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J. Exp. Med. 140:1049–1056; 1974.

    PubMed  CAS  Google Scholar 

  236. Palmiter, R. D.; Brinster, R. L.; Hammer, R. E., et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615; 1982.

    PubMed  CAS  Google Scholar 

  237. Mansour, S. L.; Thomas, K. R.; Capecchi, M. R. Disruption of the proto-oncogene int-2 mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352; 1988.

    PubMed  CAS  Google Scholar 

  238. Weinstein, R.; Stemerman, M. B.; Maciag, T. Hormonal requirements for growth of arterial smooth muscle cells in vitro: an endocrine approach to atherosclerosis. Science 212:818–820; 1981.

    PubMed  CAS  Google Scholar 

  239. Maciag, T.; Kadish, J.; Wilkins, L., et al. Organizational behavior of human umbilical vein endothelial cells. J. Cell. Biol. 94:511–520; 1982.

    PubMed  CAS  Google Scholar 

  240. Winkles, J. A.; Friesel, R.; Burgess, W. H., et al. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor). Proc. Natl. Acad. Sci. USA 84:7124–7128; 1987.

    PubMed  CAS  Google Scholar 

  241. Moscatelli, D.; Rifkin, D. B. Membrane and matrix localization of proteinases: a common theme in tumor cell invasion and angiogenesis. Biochim. Biophys. Acta 948:67–85; 1988.

    PubMed  CAS  Google Scholar 

  242. Saksela, O.; Rifkin, D. B. Cell-associated plasminogen activation: regulation physiological functions. Annu. Rev. Cell. Biol. 4:93–126; 1988.

    PubMed  CAS  Google Scholar 

  243. Walker, L. N.; Bowen-Pope, D. F.; Ross, R., et al. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc. Natl. Acad. Sci. USA 83:7311–7315; 1986.

    PubMed  CAS  Google Scholar 

  244. Sejersen, T.; Betsholtz, C.; Sjolund, M., et al. Rat skeletal myoblasts and arterial smooth muscle cells express the gene for the A chain but not the gene for the B chain (c-sis) of platelet-derived gerowth factor (PDGF) and produce a PDGF-like protein. Proc. Natl. Acad. Sci. USA 83:6844–6848; 1986.

    PubMed  CAS  Google Scholar 

  245. Barrett, T. B.; Benditt, E. P. Sis (platelet-derived growth factor B chain) gene transcript levels are elevated in human atherosclerotic lesions compared to normal artery. Proc. Natl. Acad. Sci. USA 84:1099–1103; 1987.

    PubMed  CAS  Google Scholar 

  246. Heldin, C. H.; Westermark, B.; Wasteson, A. Specific receptors for platelet-derived growth factor on cells derived from connective tissue and glia. Proc. Natl. Acad. Sci. USA 78:3664–3668; 1981.

    PubMed  CAS  Google Scholar 

  247. Mansson, P. E.; Malark, M.; Sawada, H., et al. Heparin-binding (fibroblast) growth factors type one and two genes are co-expressed in proliferating normal human vascular endothelial and smooth muscle cells. In Vitro Cell. Devel. Biol., in press; 1990.

  248. Raines, E. W.; Dower, S. K.; Ross, R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 243:393–396; 1989.

    PubMed  CAS  Google Scholar 

  249. Sawada, H.; Kan, M.; McKeehan, W. L. Differential modulation of proliferation and heparin-binding (fibroblast) growth factor binding to human aortic endothelial cells and smooth muscle cells by interleukin-1 and tumor necrosis factor. In Vitro Cell. Devel. Biol., in press; 1990.

  250. Lobb, R. R. Thrombin inactivates acidic fibroblast growth factor but not basic fibroblast growth factor. Biochemistry 27:2572–2578; 1988.

    PubMed  CAS  Google Scholar 

  251. Grisham, J. W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 22:842–849; 1962.

    PubMed  CAS  Google Scholar 

  252. Bucher, N. L. R.; Malt, R. A., eds.Regeneration of Liver and Kidney, Little Brown, Boston; 1971.

    Google Scholar 

  253. Friedman, J. M.; Chung, E. Y.; Darnell, J. E., Jr. Gene expression during liver regeneration. J. Mol. Biol. 179:37–53; 1984.

    PubMed  CAS  Google Scholar 

  254. Baumann, H. Hepatic acute phase reaction in vivo and in vitro. In Vitro Cell. Devel. Biol. 25:115–126; 1989.

    CAS  Google Scholar 

  255. Marceau, N.; Blouin, M. J.; Germain, L., et al. Role of different epithelial cell types in liver ontogenesis, regeneration and neoplasia. In Vitro Cell. Devel. Biol. 25:336–341; 1989.

    CAS  Google Scholar 

  256. Fausto, N.; Mead, J. E. Regulation of liver growth: protooncogenes and transforming growth factors. Lab Invest. 60:4–13; 1989.

    PubMed  CAS  Google Scholar 

  257. Wolff, J. A.; Yee, J. K.; Skelly, H. F., et al. Expression of retrovirally transduced genes in primary cultures of adult rat hepatocytes. Proc. Natl. Acad. Sci. USA 84:3344–3348; 1987.

    PubMed  CAS  Google Scholar 

  258. Ledley, F. D.; Darlington, G. J.; Hahn, T., et al. Retroviral gene transfer into primary hepatocytes. Implications for genetic therpay of liver-specific functions. Proc. Natl. Acad. Sci. USA 84:5335–5339; 1987.

    PubMed  CAS  Google Scholar 

  259. Wilson, J. M.; Johnston, D. E.; Jefferson, D. M., et al. Correction of the genetic defect in hepatocytes from the Watanabe heritable hyperlipidemic rabbit. Proc. Natl. Acad. Sci. USA 85:4421–4425; 1988.

    PubMed  CAS  Google Scholar 

  260. Thompson, J. A.; Anderson, K. D.; DiPietro, J. M., et al. Sitedirected neovessel formation in vivo. Science 241:1349–1352; 1988.

    PubMed  CAS  Google Scholar 

  261. Bell, E.; Sher, S.; Hull, B., et al. The reconstitution of living skin. J. Invest. Dermatol. 81 (1 Suppl):2s-10s; 1983.

    PubMed  CAS  Google Scholar 

  262. Gallico, G. G.; O’Connor, N. E.; Compton, C. C., et al. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 311:448–451; 1984.

    PubMed  Google Scholar 

  263. Bell, E.; Moore, H.; Mitchie, C., et al. Reconstruction of a thyroid gland equivalent from cells and matrix materials. J. Exp. Zool. 232:277–285; 1984.

    PubMed  CAS  Google Scholar 

  264. Weinberg, C. B.; Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400; 1986.

    PubMed  CAS  Google Scholar 

  265. Morgan, J. R.; Barrandon, Y.; Green, H., et al. Expression of an exogenous growth hormone gene by transplantable human epidermal cells. Science 237:1476–1479; 1987.

    PubMed  CAS  Google Scholar 

  266. Zwiebel, J. A.; Freeman, S. M.; Kantoff, P. W., et al. High-level recombinant gene expression in rabbit endothelial cells transduced by retroviral vectors. Science 243:220–222; 1988.

    Google Scholar 

  267. Wilson, J. M.; Birinyi, L. K.; Saloman, R. N., et al. Implantation of vascular grafts lined with genetically modified endothelial cells. Science 244:1344–1346; 1989.

    PubMed  CAS  Google Scholar 

  268. Thompson, J. A.; Handenschild, C. C.; Anderson, K. D., et al. Induction of organoid neovascular structures in vivo. Proc. Natl. Acad. Sci., in press; 1989.

  269. Thilly, B., ed.,Mammalian Cell Technology, Butterworths & Co., London; 1986.

    Google Scholar 

  270. Griffiths, J. B.; Spear, R., eds.Modern Approaches to Animal Cell Technology, Butterworths & Co., London; 1987.

    Google Scholar 

  271. James, K.; Bell, G. T. Human manoclonal antibody production. J. Immunol. Methods 100:5–40; 1987.

    PubMed  CAS  Google Scholar 

  272. Murakami, H. Serum-free media used for cultivation of hybridomas. In: Mizrahi, A., ed.Monoclonal Antibodies: Production and Application, Alan R. Liss, NY, 1989:107–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is the first of a series of invited reviews aimed at identifying fundamental contributions and current challenges associated with research activities in subdiscriplines of cell and developmental biology in vitro. This treatise is dedicated to Dr. Brian Kimes, Program Director at the National Cancer Institute, whose vision, encouragement and support have contributed significantly to modern developments in mammalian cell culture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keehan, W.L.M., Barnes, D., Reid, L. et al. Frontiers in mammalian cells culture. In Vitro Cell Dev Biol 26, 9–23 (1990). https://doi.org/10.1007/BF02624149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02624149

Key words

Navigation