Skip to main content
Log in

Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The extracellular matrix, particularly basement membranes, plays an important role in angiogenesis (blood vessel formation). Previous work has demonstrated that a basement membranelike substrate (Matrigel) induces human umbilical vein endothelial cells to rapidly form vessel-like tubes (Kubota, et al., 1988; Grant et al., 1989b); however, the precise mechanism of tube formation is unclear. Using this in vitro model, we have investigated morphologic changes occurring during tube formation and the cytoskeletal and protein synthesis requirements of this process. Electron microscopy showed that endothelial cells attach to the Matrigel surface, align, and form cylindrical structures that contain a lumen and polarized cytoplasmic organelles. The cytoskeleton is reorganized into bundles of actin filaments oriented along the axis of the tubes and is located at the periphery of the cells. The addition of colchicine or cytochalasin D blocked tube formation, indicating that both microfilaments and microtubules are involved in this process. Cycloheximide blocked tube formation by 100%, indicating that the process also required protein synthesis. In particular, collagen synthesis seems to be required for tube formation because cis-hydroxyproline inhibited tube formation, whereas either the presence of ascorbic acid or the addition of exogenous collagen IV to the Matrigel increased tube formation. Our results indicate that endothelial cell attachment to Matrigel induces the reorganization of the cytoskeleton and elicits the synthesis of specific proteins required for the differentiated phenotype of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bussolino, F.; Camussi, G.; Baglioni, C. Synthesis and release of platelet-activating factor by human vascular endothelial cells treated with tumor necrosis factor or interleukin la. J. Biol. Chem. 263:11856–11861; 1988.

    PubMed  CAS  Google Scholar 

  • Clement, B.; Segui-Real, B.; Hassell, J. R., et al. Identification of a cell surface-binding protein for the core protein of basement membrane proteoglycan. J. Biol. Chem. 264(21):12467–12471; 1989.

    PubMed  CAS  Google Scholar 

  • David, S.; LaCorbiere, M. The specificity of extracellular glycoprotein complexes in mediating cellular adhesion. J. Neurosci. 2(1):82–89; 1982.

    Google Scholar 

  • deGroot, P. G.; Reinders, J. H.; Sixma, J. J. Perturbation of human endothelial cells by thrombin or PMA changes the reactivity of their extracellular matrix. J. Cell Biol. 104:697–704; 1987.

    Article  CAS  Google Scholar 

  • Folkman, J. Toward an understanding of angiogenesis: search and discovery. Perspect. Biol. Med. 29:10–36; 1985.

    PubMed  CAS  Google Scholar 

  • Folkman, J.; Haudenschild, C. Angiogenesis in vitro. Nature 288:551–556; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J.; Klagsbrun, M. Angiogenic factors. Science 235:442–447; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, K.; Imamura, Y.; Koshihara, Y., et al. Establishment of human mucosal microvascular endothelial cells from inferior turbinate in culture. Am. J. Otolaryngol. 10(2):85–91; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, K.; Koshihara, Y.; Oda, H., et al. Type V collagen selectively inhibits human endothelial cell proliferation. Biochem. Biophys. Res. Commun. 151:1060–1068; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Furcht, L. T. Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab. Invest. 55:505–509; 1986.

    PubMed  CAS  Google Scholar 

  • Giltay, J. C.; Mourik, J. A. Structure and function of endothelial cell integrins. Haemostasis 18:376–389; 1988.

    PubMed  CAS  Google Scholar 

  • Gosposdarowicz, D.; Greenburg, G.; Birdwell, C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 38:4155–4171; 1978.

    Google Scholar 

  • Grabel, L. B.; Watts, T. D. The role of extracellular matrix in the migration and differentiation of parietal endoderm from teratocarcinoma embryoid bodies. J. Cell Biol. 105:441–448; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D. S.; Kleinman, H. K.; Martin, G. R. The role of basement membranes in vascular development. NY Acad. Sci. Vol. 588:61–72; 1989a.

    Article  Google Scholar 

  • Grant, D. S.; Tashiro, K.-I.; Segui-Real, B., et al. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943; 1989b.

    Article  PubMed  CAS  Google Scholar 

  • Howard, B. V.; Macarak, E. J.; Gunson, D., et al. Characterization of the collagen synthesized by endothelial cells in culture. Proc. Natl. Acad. Sci. USA 73:2361–2364; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E.; Folkman, J. How does extracellular matrix control capillary morphogenesis? Cell 58(Sept. 8):803–805; 1989a.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E.; Folkman, J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330; 1989b.

    Article  PubMed  CAS  Google Scholar 

  • Ingber, D. E.; Madri, J. A.; Folkman, J. Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell. Dev. Biol. 23:387–394; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical veins-identification by morphological and immunological criteria. J. Clin. Invest. 52:2745–2756; 1973.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; Klebe, R. J.; Martin, G. R. Role of collagenous matrices in the adhesion and growth of the cells. J. Cell Biol. 88:473–485; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 24:6188; 1982.

    Article  Google Scholar 

  • Kleinman, H. K.; Cannon, F. B.; Laurie, G. W., et al. Biological activities of laminin. J. Cell Biol. 27:317–325; 1985.

    CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Knedler, A.; Ham, R. G. Optimized medium for clonal growth of human microvascular endothelial cells with minimal serum. In Vitro Cell. Dev. Biol. 23:481–491; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, R. H. Extracellular matrix interactions with the apical surface of vascular endothelial cells. J. Cell. Sci. 76:1–16; 1985.

    PubMed  CAS  Google Scholar 

  • Kramer, R. H.; Fuh, G. M. Type IV collagen synthesis by cultured human microvascular endothelial cells and its deposition in the subendothelial basement membrane. Biochemistry 24:7423–7430; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y.; Kleinman, H. K.; Martin, G. R., et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107:1589–1598; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Lawley, T. J.; Kubota, Y. Induction of morphologic differentiation of endothelial cells in culture. J. Invest. Dermatol. 93(2 suppl):59S-61S; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Li, M. J.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Lioté, F.; Setiadi, H.; Wautier, J. L. Facteurs plasmatiques et cellulaires réulant la prolifération des cellules endothéliales. Arch. Mal. Coeur. 80:23–29; 1987.

    PubMed  Google Scholar 

  • Maciag, T. Molecular and cellular mechanisms of angiogenesis. In: DeVita, V. T.; Hellman, S.; Rosenberg, S. A., eds. Advances in oncology; cancer: principles and practice of oncology, 3rd ed. Philadelphia, PA: Lippincott. In press; 1989.

    Google Scholar 

  • Maciag, T.; Kadish, J.; Wilkins, L., et al. Organization behavior of human umbilical vein endothelial cells. J. Cell Biol. 94:511–520; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A.; Dryer, B.; Pitlick, F., et al. The collagenous components of the subendothelium: correlation of structure and function. Lab. Invest. 43:303–315; 1980.

    PubMed  CAS  Google Scholar 

  • Madri, J. A.; Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogensis. J. Histochem. Cytochem. 34:85–91; 1986.

    PubMed  CAS  Google Scholar 

  • Madri, J. A.; Pratt, B. M. Angiogenesis. In: Clark, R. F.; Henson, P., eds. Molecular and Cellular Biology of Wound Healing. New York: Plenum Press; 1987:337–358.

    Google Scholar 

  • Madri, J. A.; Pratt, B. M.; Tucker, A. M. Phenotypic modulation of endothelial cells by transforming growth factor-b depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106:1375–1384; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A.; Williams, S. K.; Wyatt, T., et al. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:1648–1652; 1983.

    Article  Google Scholar 

  • Mann, K.; Deutzmann, R.; Aumailley, M., et al. Amino acid sequence of mouse nidogen, a multidomain basement membrane protein with binding activity for laminin, collagen IV and cells. EMBO J. 8:65–75; 1989.

    PubMed  CAS  Google Scholar 

  • Maragoudakis, M. E. Sarmonika, M.; Panuotsacoupoulou, M. Inhibition of basement membrane biosynthesis prevents angiogenesis. J. Pharmacol. Exp. Ther. 244(2):729–733; 1988.

    PubMed  CAS  Google Scholar 

  • McAuslan, B. R.; Reilly, W.; Hannan, G. N., et al. Induction of endothelial cell migration by proline analogs and its relevance to angiogenesis. Exp. Cell Res. 176:248–257; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R. Cell-extracellular matrix interactions in morphogenesis: an in vitro approach. Experientia 42(9):977–985; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Orci, L.; Vassali, P. In vitro rapid organization of endothelial cells in to capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, E.; Pepper, M. S.; Vassalli, J.-D., et al. Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Phys. 132:509–516; 1987.

    Article  CAS  Google Scholar 

  • Mori, M.; Sadahira, Y.; Kawasaki, S., et al. Capillary growth from reversed rat aortic segments cultured in collagen gel. Acta Pathol. Jpn. 38(12):1503–1512; 1988.

    PubMed  CAS  Google Scholar 

  • Muller, W. A.; Gimbrone, M. A. Plasmalemma proteins of cultured vascular endothelial cells exhibit apical-basal polarity: analysis by surface-selective iodination. J. Cell Biol. 103(6):2389–2402; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia, R. F.; McCormick, J. F.; Bielunas, J. The formation of endothelial webs and channels in plasma clot culture. Scand. Elect. Microsc. 2:793–799; 1984.

    Google Scholar 

  • Panayotou, G.; End, P.; Aumailley, M., et al. Domains of laminin with growth-factor activity. Cell 93–101; 1989.

  • Risau, W.; Lemmon, V. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125:441–450; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Ruoslahti, E.; Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 238:491–497; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Sato, Y.; Rifkin, D. B. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, DNA synthesis. J. Cell Biol. 107:1199–1205; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Taub, M.; Wang, Y.; Szcesney, T. M., et al. Transforming growth factor alpha is required for kidney tubulogenesis in Matrigel cultures in serum-free medium. Proc. Natl. Acad. Sci. USA 87:4002–4006; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Unemori, E. N.; Bouhana, K. S.; Werb, Z. Vectorial secretion of extracellular matrix proteins, matrix degrading proteinases, and tissue inhibitor of metallo-proteinases by endothelial cells. J. Biol. Chem. 256:445–451; 1990.

    Google Scholar 

  • Williams, S. K. Isolation and culture of microvessel and large vessel endothelial cells: their use in transport in clincial studies. In: McDonagh, P., ed. Microvascular perfusion and transport in health and disease. Basel: S. Karger; 1987:204–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, D.S., Lelkes, P.I., Fukuda, K. et al. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev Biol - Animal 27, 327–336 (1991). https://doi.org/10.1007/BF02630910

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630910

Key words

Navigation