Skip to main content
Log in

Kinetics of Domain Growth in Ordered Ni4Mo

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of domain growth in Ni4Mo in the temperature range of 600 to 850 °C were investigated using transmission electron microscopy. It was found that domain growth in Ni4Mo is analogous to metallurgical grain growth and can be described by the expressionD n =kt, whereD is the average domain size, t is the aging time, k is a constant, and the exponent n is the reciprocal of the slope of the log D vs log t plot. The value of n changed with temperature from 2.0 at 850 and 800 °C to 2.9 at 700 and 600 °C. This change was explained in terms of relative domain orientation effects. The activation energy for domain growth was obtained as 69 Kcal/mole (2.9 × 105 Joules/mole) in the temperature range of 800 to 850 °C and as 92 Kcal/mole (3.85 x 105 Joules/mole) in the temperature range of 600 to 700 °C, which on comparison with available diffusion data established that the growth process was interface-controlled at the higher temperatures and bulk diffusion-controlled at the lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Harker:J. Chem. Phys., 1944, vol. 12, pp. 315–17.

    Article  CAS  Google Scholar 

  2. P. V. Guthrie and E. E. Stansbury: “X-Ray and Metallographic Study of the Nickel-Rich Alloys of the Nickel-Molybdenum System,” ORNL-Report 3078, Oak Ridge National Laboratory, Oak Ridge, TN, 1961.

    Google Scholar 

  3. E. Ruedl, P. Delavignette, and S. Amelinckx:Phys. Stat. Sol., 1968, vol. 28, pp. 305–28.

    CAS  Google Scholar 

  4. J. E. Spruiell and E. E. Stansbury:J. Phys. Chem. Sol., 1965, vol. 26, pp. 811–22.

    Article  CAS  Google Scholar 

  5. F. W. Ling and E. A. Starke Jr.:Scripta Metall., 1971, vol. 5, pp. 741–48.

    Article  CAS  Google Scholar 

  6. F. W. Ling and E. A. Starke Jr.:Acta Metall., 1971, vol. 19, pp. 759–68.

    Article  CAS  Google Scholar 

  7. B. Chakravarti, E. A. Starke, Jr., and B. G. LeFevre:J. Mats. Sci., 1970, vol. 5, pp. 394–406.

    Article  CAS  Google Scholar 

  8. P. R. Okamoto and G. Thomas:Acta Metall., 1971, vol. 19, pp. 825–41.

    Article  CAS  Google Scholar 

  9. S. K. Das, P. R. Okamoto, P. M. J. Fisher, and G. Thomas:Acta Metall., 1973, vol. 21, pp. 913–27.

    Article  CAS  Google Scholar 

  10. T. Saburi, K. Komatsu, and S. Nenno:Phil. Mag., 1969, vol. 20, pp. 1091–94.

    CAS  Google Scholar 

  11. T. Saburi, E. Kanai, and S. Nenno:J. Less-Common Metals, 1974, vol. 37, pp. 59–70.

    Article  Google Scholar 

  12. J. P. A. A. Chevalier and W. M. Stobbs:Acta Metall., 1979, vol. 27, pp. 1197–1217.

    Article  CAS  Google Scholar 

  13. S. Banerjee, K. Urban, and M. Wilkens:Acta Metall., 1984, vol. 32, pp. 299–311.

    Article  CAS  Google Scholar 

  14. T. S. Lei: Ph.D. Dissertation, University of Tennessee, Knoxville, TN, 1979.

  15. E. E. Stansbury: inHigh-Temperature Ordered Intermetallic Alloys, C. C. Koch, C. T. Liu, and N. S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, vol. 39, pp. 93–107.

    Google Scholar 

  16. R. S. Irani, F. W. Ling, and R. W. Cahn:Metallography, 1973, vol. 6, pp. 141–53.

    Article  CAS  Google Scholar 

  17. E. E. Stansbury, K. Vasudevan, and T. S. Lei: inMicrostructural Science, S. A. Shiels, C. Bagnall, R. E. Witkowski, and G. F. Vander Voort, eds., Elsevier, New York, NY, 1985, vol. 13, pp. 197–219.

    Google Scholar 

  18. T. S. Lei, K. Vasudevan, and E. E. Stansbury: inHigh-Temperature Ordered Intermetallic Alloys, C. C. Koch, C. T. Liu, and N. S. Stoloff, eds., Materials Research Society, Pittsburgh, PA, 1985, vol. 39, pp. 163–72.

    Google Scholar 

  19. D. De Fontaine:Acta Metall., 1975, vol. 23, pp. 553–71.

    Article  Google Scholar 

  20. J. D. Boyd and R. B. Nicholson:Acta Metall., 1971, vol. 19, pp. 1379–91.

    Article  CAS  Google Scholar 

  21. R. Kikuchi and J. W. Cahn:Acta Metall., 1979, vol. 27, pp. 1337–53.

    Article  CAS  Google Scholar 

  22. L. E. Tanner:Acta Metall., 1972, vol. 20, pp. 1197–1227.

    Article  CAS  Google Scholar 

  23. K. Vasudevan: Ph.D. Dissertation, University of Tennessee, Knoxville, TN, 1986.

  24. K. Vasudevan, H. P. Kao, C. R. Brooks, and E. E. Stansbury: inProc. 44th Annual Meeting of the Electron Microscopy Society of America, G. W. Bailey, ed., San Francisco Press, San Francisco, CA, 1986, pp. 560–61.

    Google Scholar 

  25. R. E. Reed-Hill:Physical Metallurgy Principles, Van Nostrand Reinhold, New York, NY, 1972, pp. 202–12.

    Google Scholar 

  26. P. Gordon and T. A. El-Bassyouni:Trans. TMS-AIME, 1965, vol. 233, pp. 391–97.

    CAS  Google Scholar 

  27. A. J. Ardell, N. Mardesich, and C. N. J. Wagner:Acta Metall., 1979, vol. 27, pp. 1261–69.

    Article  CAS  Google Scholar 

  28. A. T. English:Trans. TMS-AIME, 1966, vol. 236, pp. 14–18.

    CAS  Google Scholar 

  29. G. E. Poquette and D. E. Mikkola:Trans. TMS-AIME, 1969, vol. 245, pp. 743–51.

    CAS  Google Scholar 

  30. D. N. Braski, R. W. Carpenter, and J. Bentley:Acta Metall., 1982, vol. 30, pp. 799–812.

    Article  CAS  Google Scholar 

  31. S. M. Allen and J. W. Cahn:Acta Metall., 1979, vol. 27, pp. 1085–95.

    Article  CAS  Google Scholar 

  32. J. W. Christian: inThe Theory of Phase Transformations in Metals and Alloys, Pergamon Press, New York, NY, 1965, pp. 697–709.

    Google Scholar 

  33. D. G. Morris, G. T. Brown, R. C. Piller, and R. E. Smallman:Acta Metall., 1976, vol. 24, pp. 21–28.

    Article  CAS  Google Scholar 

  34. S. M. Allen and J. E. Krzanowski: inProc. Int. Conf. on Solid to Solid Phase Transformations, H. I. Aaronson, D. E. Laughlin, R. F. Sekerka, and C. M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 225–29.

    Google Scholar 

  35. J. E. Krzanowski and S. M. Allen:Surface Science, 1984, vol. 144, pp. 153–75.

    Article  CAS  Google Scholar 

  36. H. P. Kao: Ph.D. Dissertation, University. of Tennessee, Knoxville, TN, 1986.

  37. R. S. Irani:Contemp. Phys., 1972, vol. 13, pp. 559–83.

    ADS  CAS  Google Scholar 

  38. I. M. Lifshitz and V. V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  39. J. E. Spruiell, L. M. Ruch, and C. R. Brooks:Metall. Trans. A, 1975, vol. 6A, pp. 1301–05.

    CAS  Google Scholar 

  40. K. Hirano, R. P. Agarwala, and M. Cohen:J. Appl. Phys., 1962, vol. 33, pp. 3049–54.

    Article  CAS  Google Scholar 

  41. J. Askill: inDiffusion in Body-Centered Cubic Metals, ASM, Metals Park, OH, 1965, pp. 247–252.

    Google Scholar 

  42. R. H. Moore: inDiffusion in Body-Centered Cubic Metals, ASM, Metals Park, OH, 1965, pp. 275–81.

    Google Scholar 

  43. L. Girifalco:J. Phys. Chem. Solids, 1964, vol. 24, pp. 323–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, V.K., Kao, H.P., Brooks, C.R. et al. Kinetics of Domain Growth in Ordered Ni4Mo. Metall Trans A 19, 941–952 (1988). https://doi.org/10.1007/BF02628379

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628379

Keywords

Navigation