Skip to main content
Log in

Smooth muscle releases an epithelial cell scatter factor which binds to heparin

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

We report that culture bovine calf aorta and human adult iliac artery smooth muscle cells release a soluble factor which causes spreading and separation of cells in normally tight, cohesive epithelial colonies, similar to the morphologic changes induced by the fibroblast-derived scatter factor (SF). Smooth muscle-derived SF was heat sensitive, trypsin labile, and nondialyzable, consistent with a protein (or proteins). Its effects on epithelium were not mimicked by a variety of proteolytic enzymes, growth factors, or hormones, and were not blocked by antiproteases or by antibodies to fibronectin and basic fibroblast growth factor. Epithelial cell proliferation was unaffected or only mildly stimulated by partially purified SF at concentrations that produced cell scattering. Both smooth muscle-and MRC5 human embryo fibroblast-derived SFs could be partially purified with similar elution patterns on a number of different chromatographic columns, including DEAE-agarose, heparin-sepharose, Bio-Rex 70, concanavalin A-sepharose, and MonoQ. SF from both sources bound tightly to heparin-sepharose, requiring 1.3 to 1.4M NaCl for elution. The morphologically obvious cell scattering effect was markedly inhibited by soluble heparin at concentrations down to 5 μg/ml, and this inhibition was prevented by protamine. These data suggest that vascular smooth muscle cells produce an epithelial cell scattering factor with properties similar to the fibroblast-produced factor, including a high affinity for heparin. Such factors are potentially important because they may represent a new class of proteins that primarily regulate cell mobility rather than growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behrens, J.; Birchmeier, W.; Goodman, S. L., et al. Dissociation of Madin-Darby kidney epithelial cells by the monoclonal antibody anti-Arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J. Cell Biol. 101:1307–1315; 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Burk, R. R. A factor from a transformed cell line that affects cell migration. Proc. Natl. Acad. Sci. USA 70:369–372; 1973.

    Article  PubMed  CAS  Google Scholar 

  4. Cereijido, M.; Robbins, E. S.; Dolan, W. J., et al. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J. Cell Biol. 77:853–880; 1978.

    Article  PubMed  CAS  Google Scholar 

  5. Cereijido, M.; Ehrenfeld, J.; Meza, I., et al. Structural and functional membrane polarity in cultured monolayers of MDCK cells. J. Membr. Biol. 52:147–159; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Damsky, H. C.; Richa, J.; Solter, D., et al. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell 34:455–466; 1983.

    Article  PubMed  CAS  Google Scholar 

  7. DeLarco, J. E.; Pigott, D. A.; Lazarus, J. A. Ectopic peptides released by a human melanoma cell line that modulate the transformed phenotype. Proc. Natl. Acad. Sci. USA 82:5015–5019; 1985.

    Article  CAS  Google Scholar 

  8. Edelman, G. M. Cell adhesion molecules. Science 219:450–453; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Folkman, J. Angiogenesis: initiation and control. In: Fishman, A. P., ed. Endothelium. Ann NY Acad. Sci. 401:212–227; 1982.

  10. Geiger, B.; Arnur, Z.; Rinnerthaler, G., et al. Microfilament-organizing centers in areas of cell contact: cytoskeletal interactions during cell attachment and locomotion. J. Cell Biol. 92:83s-91s; 1984.

    Article  Google Scholar 

  11. Geiger, B.; Dutton, A. H.; Tokuyasu, K. T., et al. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of a-actinin, tropomyosin, and vinculin in intestinal brush border and chicken gizzard smooth muscle cells. J. Cell Biol. 9:614–628; 1981.

    Article  Google Scholar 

  12. Hornebeck, W.; Tixier, J. M.; Robert, L. Inducible adhesion of mesenchymal cells to elastic fibers: elastonectin. Proc. Natl. Acad. Sci. USA 83:5517–5520; 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Imhof, B. A.; Vollmers, H. P.; Goodman, S. L., et al. Cell-cell interaction and polarity of epithelial cells; specific perturbation using a monoclonal antibody. Cell 35:667–675; 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Jones, J. C. R.; Yokoo, K. M.; Goldman, R. D. A cell surface desmosomal-associated component: identification of a tissue-specific cell adhesion molecule Proc. Natl. Acad. Sci. USA 83:7282–7286; 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Liotta, L. A.; Mandler, R.; Murano, G., et al. Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci USA 83:3302–3306; 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Liotta, L. A.; Mandler, R.; Murano, G., et al. Tumor cell autocrine motility factor. Proc. Natl. Acad. Sci. USA 83:3302–3306; 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Lobb, R.; Sasse, J.; Sullivan, R., et al. Purification and characterization of heparin-binding endothelial cell growth factors. J. Biol. Chem. 261:1924–1928; 1986.

    PubMed  CAS  Google Scholar 

  18. Maciag, T.; Mehlman, T.; Friesel, R. Heparin binds endothelial cell growth factor, the principal cell mitogen in bovine brain. Science 225:932–935; 1984.

    Article  PubMed  CAS  Google Scholar 

  19. Majack, R. A.; Cook, S. C.; Bornstein, P. Control of smoth muscle growth by components of the extracellular matrix: autocrine role for thrombospondin. Proc. Natl. Acad. Sci. USA 83:9050–9054; 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Peyrieras, N.; Hayfil, F.; Louvard, D., et al. Uvomorulin: a nonintegral membrane protein of early mouse embryo. Proc. Natl. Acad. Sci. USA 80:6274–6277; 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Rohrschneider, L. R. Adhesion plaques of Rous sarcoma virus-transformed cells contain thesrc gene product. Proc. Natl. Acad. Sci. USA 77:3514–3518; 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Stenn, K. Epibolin: a protein of human plasma that supports epithelial cell movement. Proc. Natl. Acad. Sci USA 78:6907–6911; 1981.

    Article  PubMed  CAS  Google Scholar 

  23. Stenn, K. S.; Madri, J. A.; Tinghitella, T., et al. Multiple mechanisms of dissociated epidermal cell spreading. J. Cell Biol. 96:63–67; 1983.

    Article  PubMed  CAS  Google Scholar 

  24. Stoker, M. Junctional competence in clones of mammary epithelial cells, and modulation by conditioned medium. J. Cell. Physiol. 121:174–183; 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Stoker, M.; Gherardi, E.; Perryman, M., et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327:239–242; 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Stoker, M.; Perryman, M. An epithelial scatter factor released by embryo fibroblasts. J. Cell Sci. 77:209–223; 1985.

    PubMed  CAS  Google Scholar 

  27. Suzuki, S.; Argraves, W. S.; Pytela, R., et al. cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal transmembrane domain and homologies with other adhesion protein receptors. Proc. Natl. Acad. Sci. USA 83:8614–8618; 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Terranova, V. P.; Rohrbach, D. H.; Martin, G. R. Role of laminin in the attachment of PAM 212 (epithelial) cells to basement membrane collagen. Cell 22:719–726; 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Thyberg, J.; Palmberg, L.; Nilsson, J., et al. Phenotype modulation in primary cultures of arterial smooth muscle cells. Differentiation 25:156–167; 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Volberg, T.; Geiger, B.; Kartenbeck, J., et al. Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions. J. Cell Biol. 102:1832–1842; 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Warren, S. L.; Nelson, W. J. Nonmitogenic morphoregulatory action of pp60 v-src on multicellular epithelial structures. Mol. Cell. Biol. 7:1326–1337; 1987.

    PubMed  CAS  Google Scholar 

  32. Yamada, K. M. Cell surface interactions with extracellular materials. Ann. Rev. Biochem. 12:761–799; 1983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by American Cancer Society grant ACS IN-31-28-5, an Argail L. and Anna G. Hull Cancer Research Award, and grants-in-aid from the American Heart Association (#880981) and the American Lung Association of Connecticut. Dr. Goldberg was supported by the LIJ-Harvard Research Consortium and the Finkelstein Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, E.M., Goldberg, I.D., Kacinski, B.M. et al. Smooth muscle releases an epithelial cell scatter factor which binds to heparin. In Vitro Cell Dev Biol 25, 163–173 (1989). https://doi.org/10.1007/BF02626174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02626174

Key words

Navigation