Skip to main content
Log in

Structural and functional membrane polarity in cultured monolayers of MDCK cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

MDCK cells form monolayers which have many of the properties usually found in transporting epithelia. The present article is devoted to the study of the structural and functional polarization of MDCK cells, which is one of the central features of transporting epithelia. The results show: (i) that MDCK monolayers transport 2.6 μmol hr−1 cm−2 of sodium in the apical to basolateral direction; (ii) the passive flux of this ion is relatively large (20.3 mole hr−1 cm−2), which is a characteristic of leaky epithelia; (iii) a large fraction of the penetration of sodium into the cells proceeds through an amiloride-sensitive channel, and the exit is operated mainly by a ouabain-sensitive pump; (iv) the net transport of sodium from the apical to the basolateral side agrees with the asymmetric labeling of the pumps with3H-ouabain; (v) this asymmetric labeling agrees, in turn, with a higher concentration of intramembrane particles (IMPs) in freeze-fracture replicas of the basolateral side of the plasma membrane; (vi) the structural polarization of confluent MDCK cells is also revealed by the location of microvilli, occluding junctions, and pinocytotic vesicles; and (vii) the presence of a continuous ring formed by actin microfilaments visualized by immunofluorescence under the lateral aspect of the plasma membrane that may be related to the distribution of the occluding junctions, which act as barriers separating apical from basolateral membrane components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaza, N.A., Leighton, J., Schultz, S.G. 1974. Effects of ouabain on the function and structure of a cell line (MDCK) derived from canine kidney.In Vitro 10:172

    Google Scholar 

  • Ash, J.F., Louvard, D., Singer, S.J. 1977. Antibody-induced linkages of plasma membrane protein to intracellular actomyosin containing filaments in cultured fibroblasts.Proc. Nat. Acad. Sci USA 74:5584

    PubMed  Google Scholar 

  • Ash, J.F., Singer, S.J. 1976. Concanavalin-A-induced transmembrane linkage of concanavalin A surface receptors to intracellular myosin-containing filaments.Proc. Nat. Acad. Sci. USA 73:4575

    PubMed  Google Scholar 

  • Baker, P.F., Willis, J.S. 1972. Binding of the cardiac glycoside ouabain to intact cells.J. Physiol. (London) 224:441

    Google Scholar 

  • Barker, G., Simmons, N.L. 1978. Dog kidney MDCK cell monolayers can display properties similar to high resistance epithelia.J. Physiol. (London) 285:48P

    Google Scholar 

  • Bentzel, C.J., Hainau, B., Edelman, A., Agnastopoulos, T., Benedetti, E.L. 1976. Effect of plant cytokinins on microfilaments and tight junctions permeability.Nature (London) 264:666

    Google Scholar 

  • Brading, A.F., Widdicombe, J.H. 1974. An estimate of sodium/potassium pump activity and the number of pump sites in the smooth muscle of the guinea-pigTaenia coli, using3H-ouabain.J. Physiol. (London) 238:235

    Google Scholar 

  • Branton D., Bullivant, S., Gilula, N.B., Karnovsky, M.J., Moor, H., Muhlethaler, K., Northcote, D.F., Packer, L., Satir, P., Speth, V., Staehelin, L.A., Steere, R.L., Weinstein, R.S. 1975. Freeze-etching nomenclature.Science 190:54

    PubMed  Google Scholar 

  • Brinkley, B.R., Fuller, G.M., Highfield, D.P. 1975. Cytoplasmic microtubules, in normal and transformed cells in culture. Analysis by tubulin antibody immunofluorescence.Proc. Nat. Acad. Sci. USA 71:4981

    Google Scholar 

  • Brinkley, B.R., Fuller, G.M., Highfield, D.P. 1976. Tubulin antibodies as probes for microtubules in dividing and non-dividing mammalian cells.In: Cell Motility. A.R. Goldman, T. Pollard, and J. Rosenbaum, editors. p. 435. Cold Spring Harbor Laboratory, Cold Spring Harbor (N.Y.)

    Google Scholar 

  • Brown, S., Levinson, W., Spudich, J.A. 1976. Cytoskeletal elements of chick embryo fibroblasts revealed, by detergent extraction.J. Supramol. Struc. 5:119

    Google Scholar 

  • Bryan, J., Wilson, L. 1971. Are cytoplasmic microtubules heteropolymers?Proc. Nat. Acad. Sci. USA 68:1762

    PubMed  Google Scholar 

  • Cereijido, M., Robbins, E.S., Dolan, W.J., Rotunno, C.A., Sabatini, D.D. 1978. Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell Biol. 77:853

    PubMed  Google Scholar 

  • Chevalier, J., Bourguet, J., Hugon, J.S. 1974. Membrane associated particles. Distribution in frog urinary epithelium at rest and after oxytocin treatment.Cell Tissue Res. 152:129

    PubMed  Google Scholar 

  • Clausen, T., Hausen, O. 1974. Ouabain binding and Na+−K+ transport across cell membranes, and its application to red cell glucose transport.Biochim. Biophys. Acta 345:387

    Google Scholar 

  • Cruz, L.J., Biber, T.V.L. 1976. Transepithelial transport kinetics and Na entry in frog skin: Effects of novobiocin.Am. J. Physiol. 231:1866

    PubMed  Google Scholar 

  • Curran, P.F. 1960. Na, Cl, and water transport by rat ileum in vitro.J. Gen. Physiol. 43:1137

    Google Scholar 

  • Curran, P.F., Schultz, S.G. 1968. Transport across membranes General principles.In: Handbook of Physiology. Sect. 6. Alimentary Canal. Vol. 3, p. 1217. American Physiological Society, Washington

    Google Scholar 

  • Curran, P.F., Schwartz, G.F. 1960. Na, Cl and water transport by rat colon.J. Gen. Physiol. 43:555

    PubMed  Google Scholar 

  • Curran, P.F., Solomon, A.K. 1957. Ion and water fluxes in the ileum of rats.J. Gen. Physiol. 41:143

    PubMed  Google Scholar 

  • De Camilli, P., Peluchetti, D., Meldolesi, J. 1974. Structural difference between luminal and lateral plasmalemma in pancreatic acinar cells.Nature (London) 248:245

    Google Scholar 

  • De Camilli, P., Peluchetti, D., Meldolesi, J. 1976. Dynamic changes of the luminal plasmalemma in stimulated parotid acinar cells. A freeze-fracture study.J. Cell Biol. 70:59

    PubMed  Google Scholar 

  • Diamond, J.M. 1962. The mechanism of solute transport by the gallbladder.J. Physiol. (London) 161:474

    Google Scholar 

  • Dunham, P.B., Hoffman, J.F. 1971. Active cation transport and ouabain binding in high potassium and low potassium red blood cells of sheep.J. Gen. Physiol. 58:94

    Google Scholar 

  • Dutta, S., Marks, B.H. 1969. Factors that regulate3H-ouabain accumulation by the isolated guinea pig heart.J. Pharmacol. Exp. Ther. 170:318

    PubMed  Google Scholar 

  • Eigler, J., Crabbé, J. 1969. Effects of diuretics on active sodium transport in amphibian membranes.In: Renal Transport and Diuretics. K. Thurau and H. Jahrmarker, editors. p. 195. Springer-Verlag, Berlin

    Google Scholar 

  • Ellory, D.C., Keynes, R.D. 1969. Binding of triated digosin to human red cell ghost.Nature (London) 221:776

    Google Scholar 

  • Erlij, D., Martínez-Palomo, A. 1978. Role of tight junctions in epithelial function.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Vol. 3. p. 27. Springer-Verlag, Berlin

    Google Scholar 

  • Ernst, S.A., Mills, J.W. 1977. Basolateral plasma membranes localization of ouabain sensitive sodium transport sites in the secretory epithelium of the avian salt gland.J. Cell Biol. 75:74

    PubMed  Google Scholar 

  • Field, M., Fromm, D., McColl, I. 1971. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current.Am. J. Physiol. 220:1388

    PubMed  Google Scholar 

  • Frederiksen, O., Leyssac, P.P. 1977. Effect of cytochalasin B and dimethylsulfoxide on isosmotic fluid transport by rabbit gallbladder “in vitro”.J. Physiol. (London) 265:103

    Google Scholar 

  • Gabbiani, G., Chaponnier, C., Zumbe, A., Vassalli, P. 1977. Actin and tubulin co-cap with surface immuno globulins in murine B lymphocytes.Nature (London) 269:695

    Google Scholar 

  • Galli, P., Brenna, A., De Camilli, P., Meldolesi, J. 1976. Extracellular calcium and the organization of tight junction in pancreatic acinar cells.Exp. Cell Res. 99:178

    PubMed  Google Scholar 

  • Grinstein, S., Erlij, D. 1974. Insulin unmasks latent, sodium pump sites in frog muscle.Nature (London) 251:57

    Google Scholar 

  • Hoffman, J.F. 1969. The interaction between3H-ouabain and the Na−K pump in red blood cells.J. Gen. Physiol. 54:343s

    Google Scholar 

  • Hogben, C.A.M. 1955. Active transport of chloride by isolated frog gastric epithelium origin of the gastric mucosal potential.Am. J. Physiol. 180:641

    PubMed  Google Scholar 

  • Joiner, C.M., Lauf, P.K. 1978. The correlation between ouabain binding and potassium pump inhibition in human and sheep erythrocytes.J. Physiol. (London) 283:155

    Google Scholar 

  • Koch, L.F.G., Smith, M.J. 1978. An association between actin and the major histocompatibility antigen H-2.Nature (London) 273:274

    Google Scholar 

  • Kyte, J. 1976. Immunoferritin determination, of the distribution of (Na++K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment.J. Cell. Biol. 68:304

    PubMed  Google Scholar 

  • Landowne, D., Ritchie, J.M. 1970. The binding of triated ouabain to mammalian nonmyelinated nerve fibres.J. Physiol. (London) 207:529

    Google Scholar 

  • Leighton, J., Brada, Z., Estes, L., Justh, G. 1969. Secretory activity and oncogenicity of a cell line (MDCK) derived from canine kidney.Science 163:472

    PubMed  Google Scholar 

  • Machen, T.E., Erlij, D., Wooding, F.B.P. 1972. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine.J. Cell Biol. 54:302

    PubMed  Google Scholar 

  • Madin, S.H., Darby, N.B. 1958. As catalogued in: American Type Culture Collection Catalogue of strains (1975) Vol. 2, p. 47. H.O. Hatt, editor. Washington, D.C.

  • Martínez-Palomo, A., Chávez, B., González-Robles, A. 1978. The freeze-fracture technique: Application to the study of animal plasma membranes.In: Electron Microscopy 1978. J.M. Sturges, editor. Vol. 3, p. 503. Microscopy Society of Canada, Toronto

    Google Scholar 

  • Martínez-Palomo, A., Erlij, D. 1973. The distribution of lanthanum in tight junctions of the kidney tubule.Pfluegers Arch. 343:267

    Google Scholar 

  • Meldolesi, J., Castiglioni, G., Parma, R., Nassivera, N., De Camilli, P. 1978. Ca++-dependent disassembly and reassembly of occluding junctions in guinea pig pancreatic acinar cells. Effect of drugs.J. Cell Biol. 79:156

    PubMed  Google Scholar 

  • Meza, I., Sabanero, M., Martínez-Palomo, A., Cereijido, M. 1978. Relationship between tight junctions and cytoskeleton in monolayers of MDCK cells.J. Cell Biol. 79:243a

    Google Scholar 

  • Mills, J.W., Ernst, S.A. 1975. Localization of sodium pump sites in frog urinary bladder.Biochim. Biophys. Acta 375:268

    PubMed  Google Scholar 

  • Mills, J.W., Ernst, S.A., DiBona, D.R. 1977. Localization of Na+ pump sites in frog skin.J. Cell Biol. 73:88

    Article  PubMed  Google Scholar 

  • Misfeldt, D.S., Hamamoto, S.T., Pitelka, D.R. 1976. Transepithelial transport in cell culture.Proc. Nat. Acad. Sci. USA 73:1212

    PubMed  Google Scholar 

  • Moore, P.B., Ownby, C.L., Carraway, K.L. 1978. Interactions of cytoskeletal elements with the plasma membrane of sarcoma 180 Ascites tumor cells.Exp. Cell Res. 115:331

    PubMed  Google Scholar 

  • Nicolson, G.L. 1976. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components.Biochim. Biophys. Acta 457:58

    Google Scholar 

  • Oken, D.E., Whittembury, G., Windhager, E., Solomon, A.K. 1963. Single proximal tubules ofNecturus kidney. V. Unidirectional sodium movement.Am. J. Physiol. 204:372

    PubMed  Google Scholar 

  • Osborn, M., Born, T., Koitsch, H.J., Weber, K. 1978. Stereo immunofluorescence microscopy. I. Three dimensional arrangement of microfilaments, microtubules and tonofilaments.Cell 14:477

    PubMed  Google Scholar 

  • Osborn, M., Weber, K. 1977. The display of microtubules in transformed cells.Cell 12:561

    PubMed  Google Scholar 

  • Pisam, M., Ripoche, P. 1976. Redistribution of surface macromolecules in dissociated epithelial cells.J. Cell Biol. 71:907

    PubMed  Google Scholar 

  • Quinton, P.M., Wright, E.M., Tormey, J. 1973. Localization of sodium pumps in the choroid plexus epithelium.J. Cell. Biol. 58:724

    PubMed  Google Scholar 

  • Rabito, C.A., Tchao, R., Valentich, J., Leighton, J. 1978. Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney.J. Membrane Biol. 43:351

    Google Scholar 

  • Rindler, M.J., Saier, M.H., Jr. 1978. An electroneutral exchange carrier for sodium in a dog kidney epithelial cell line (MDCK).Int. Congr. Nephrol. 7:22 (Abstr.)

    Google Scholar 

  • Rodríguez-Boulan, E., Sabatini, D.D. 1978. Asymmetric budding of viruses in epithelial monolayers: A model system for study of epithelial polarity.Proc. Nat. Acad. Sci. USA 75:5071

    PubMed  Google Scholar 

  • Rozengurt, E., Heppel, L.A. 1975. Serum rapidly stimulates ouabain-sensitive86Rb+ influx in quiescent 3T3 cells.Proc. Nat. Acad. Sci. USA 72:4492

    PubMed  Google Scholar 

  • Sachs, J.R. 1977. Kinetic evaluation of the Na−K pump reaction mechanism.J. Physiol. (London) 273:489

    Google Scholar 

  • Schultz, S.G., Zalusky, R. 1963. Ion transport in isolated rabbit ileum. I. Short circuit current and Na fluxes.J. Gen. Physiol. 47:567

    Google Scholar 

  • Shelanski, M., Gaskin, F., Cantor, C.R. 1973. Microtubule assembly in the absence of added nucleotides.Proc. Nat. Acad. Sci. USA 70:765

    PubMed  Google Scholar 

  • Smith, J.B., Rozengurt, E. 1978. Serum stimulates the Na+, K+ pump in quiescent fibroblasts by increasing Na+ entry.Proc. Nat. Acad. Sci. USA 75:(11)5560

    PubMed  Google Scholar 

  • Spudich, A.J., Watt, S. 1971. The regulation of rabbit skeletal muscle contraction.Biol. Chem. 246:4866

    Google Scholar 

  • Sunqvist, K.G., Ehrnst, A. 1976. Cytoskeletal control of surface membrane mobility.Nature (London) 264:226

    Google Scholar 

  • Taylor, A., Mamelak, M., Goldbetz, H., Maffly, E. 1976. Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. I. Functional studies on the effects of antimitotic agents on the response to vasopressin.J. Membrane Biol. 40:213

    Google Scholar 

  • Trupper, J.T., Zorgniotti, F., Mills, B. 1977. Potassium transport and content during G, and S phase following serum stimulation of 3T3 cells.J. Cell Physiol. 91:429

    PubMed  Google Scholar 

  • Ussing, H.H., Andersen, B. 1955. The relation between solvent drag and active transport of ions.Proc. Int. Congr. Biochem. 3:434

    Google Scholar 

  • Wade, J.B., DiScala, V.A., Karnovsky, M.J. 1975. Membrane structural specialization of the toad bladder revealed by the freeze-fracture technique. I. The granular cell.J. Membrane Biol. 22:385

    Google Scholar 

  • Weber, K., Wehland, J., Herzog, W. 1976. Griseofulvin interacts with microtubules bothin vivo andin vitro.J. Mol. Biol. 102:817

    PubMed  Google Scholar 

  • Zadunaisky, J.A., Candia, O.A., Chiarandini, D.J. 1963. The origen of the short-circuit current in the isolated skin on the South American frogLeptodactylus ocellatus.J. Gen. Physiol. 37:393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cereijido, M., Ehrenfeld, J., Meza, I. et al. Structural and functional membrane polarity in cultured monolayers of MDCK cells. J. Membrain Biol. 52, 147–159 (1980). https://doi.org/10.1007/BF01869120

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869120

Keywords

Navigation