Skip to main content
Log in

Malignant tumor cell lines produce interleukin-1-like factor

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

Sixty-four malignant cell lines were examined for interleukin-1 (IL-1) activities in their conditioned medium using thymocyte and fibroblast proliferation assays. Sixteen cell lines showed high IL-1 activity. Comparison of these activities with human IL-1 showed similarity between some biological properties. However there was no correlation between cell origin and IL-1 activity. These results suggest the possibility that most malignant cells may produce an IL-1-like factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auron, P. E.; Webb, A. C.; Rosenwasser, L. J., et al. Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc. Natl. Acad. Sci. USA 81:7907–7911; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Birchall, N.; Kupper, T.; McGuire, J. Recombinant human interleukin-1 alpha is mitogenic for human keratinocytes. J. Cell Biol. 105:109a(abstract); 1987.

    Google Scholar 

  3. Chambers, T. J.; McSheehy, P. M. J.; Thomson, B. M., et al. The effect of calcium-regulating hormones and prostaglangins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 116:234–239; 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Dinarello, C. A. Interleukin-1. Rev. Infect. Dis. 6:51–95; 1984.

    PubMed  CAS  Google Scholar 

  5. Dower, S. K.; Kronheim, S. R.; March, C. J., et al. Detection and characterization of high affinity plasma membrane receptors for human interleukin 1. J. Exp. Med. 162:501–515; 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Fontana, A.; Hengartner, H.; Tribolet, N., et al. Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2 mediated effects. Immunology 132:1837–1844; 1984.

    CAS  Google Scholar 

  7. Gospodarowicz, D.; Cheng, J.; Lui, G.-M., et al. Isolation of brain fibroblast growth factor by heparin-sepharose affinity chromatography: Identity with pituitary fibroblast growth factor. Proc. Natl. Acad. Sci. USA 81:6963–6967; 1984.

    Article  PubMed  CAS  Google Scholar 

  8. Grabner, G.; Luger, T. A.; Smolin, G., et al. Corneal epithelial cell-derived thymocyte activating factor (CETAF). Invest. Ophthalmol. Vis. Sci. 23:757–763; 1982.

    PubMed  CAS  Google Scholar 

  9. Hauser, C.; Dayer, J.-M.; Jaunin, F., et al. Intracellular epidermal interleukin 1-like factors in the human epidermoid carcinoma cell line A431. cell. Immunol. 100:89–96; 1986.

    Article  PubMed  CAS  Google Scholar 

  10. Hauser, C.; Saurat, J. H.; Schmitt, A., et al. Interleukin 1 is present in normal human epidermis. J. Immunol. 136:3317–3323; 1986.

    PubMed  CAS  Google Scholar 

  11. Kampschmidt, R. F. The numerous postulated biological manifestations of interleukin-1. J. Leukocyte Biol. 36:341–355; 1984.

    PubMed  CAS  Google Scholar 

  12. Kokoschka, E. M.; Luger, T. A.; Koch, A., et al. Melanoma cell production of an interleukin 1-like thymocyte activating factor. Arch. Dermatol. 276:267(abstract); 1984.

    Google Scholar 

  13. Kurokawa, T.; Sasada, R.; Iwane, M., et al. Cloning and expression of cDNA encoding human basic fibroblast growth factor. FEBS Lett. 213:189–194; 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Lobb, R.; Sasse, J.; Sullivan, R., et al. Purification and characterization of heparin-binding endothelial cell growth factors. Biol. Chem. 261:1924–1928; 1986.

    CAS  Google Scholar 

  15. Lomedico, P. T.; Bugler, U.; Hellman, C. P., et al. Cloning and expression of murine interleukin-1 cDNA in Escherichia coli. Nature 312:458–462; 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Lovett, D. H.; Ryan, J. L.; Sterzel, R. B. A thymocyte-activating factor derived from glomerular mesangial cells. J. Immunology 130:1796–1801; 1983.

    CAS  Google Scholar 

  17. Luger, T. A.; Oppenheim, J. J. Characteristics interleukin 1 and epidermal cell-derived thymocyte activating factor. J. Adv. Inflammation Res. 5:1–25; 1983.

    CAS  Google Scholar 

  18. Luger, T. A.; Stadler, B. M.; Katz, S. I., et al. Epidermal cell (keratinocyte) derived thymocyte activating factor. J. Immunology 127:1493–1498; 1981.

    CAS  Google Scholar 

  19. Luger, T. A.; Stadler, B. M.; Luger, B. M., et al. Characteristics of an epidermal cell thymocyte activating factor (ETAF) produced by human epidermal cells and a human squamous cell carcinoma cell line. J. Invest. Dermatol. 81:187–193; 1983.

    Article  PubMed  CAS  Google Scholar 

  20. March, C. J.; Mosley, B.; Larsen, A., et al. Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature 315:641–647; 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Okai, Y.; Tashiro, H.; Yamashita, U. 3T3 fibroblasts are stimulated by 12-0-tetradecanoyl-phorbol-13-acetate to produce thymocyte activating factors. FEBS Lett. 142:93–95; 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Okamoto, T.; Wu, D.; Kan, M., et al. Production of a basic FGF-like growth factor by human epidermoid carcinoma. In Vitro 23:41(abstract); 1987.

    Google Scholar 

  23. Onozaki, K.; Matsushima, K.; Aggarwal, B. B., et al. Human interleukin 1 is a cytocidal factor for several tumor cell lines. J. Immunol. 132:1837–1844; 1984.

    Google Scholar 

  24. Oppenheim, J. J.; Kovacs, E. J.; Matsushima, K., et al. There is more than one interleukin 1. Immunol. Today 7:45–56; 1986.

    Article  CAS  Google Scholar 

  25. Postlethwaite, A. E.; Lachman, L. B.; Mainardi, C. L., et al. Interleukin 1 stimulation of collagenase production by cultured fibroblasts. J. Exp. Med. 157:801–806; 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Rogeli, S.; Weinberg, R. A.; Fanning, P., et al. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331:173–175; 1988.

    Article  Google Scholar 

  27. Sauder, D. N.; Dinarello, C. A.; Morhenn, V. B. Langerhans cell production of interleukin-1. J. Invest. Dermatol. 82:605–607; 1984.

    Article  PubMed  CAS  Google Scholar 

  28. Schmidt, J. A.; Mizel, S. B.; Cohen, D., et al. Interleukin 1, a potential regulator of fibroblast proliferation. J. Immunol. 128:2177–2182; 1982.

    PubMed  CAS  Google Scholar 

  29. Thomas, K.; Rios-Chandelore, M.; Gimemez-Gallego, G., et al. Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc. Natl. Acad. Sci. USA 82:6409–6413; 1985.

    Article  PubMed  CAS  Google Scholar 

  30. Thomson, B. M.; Saklatvata, J.; Chambers, T. J. Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts. J. Exp. Med. 164:104–112; 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyauchi, S., Moroyama, T., Kyoizumi, S. et al. Malignant tumor cell lines produce interleukin-1-like factor. In Vitro Cell Dev Biol 24, 753–758 (1988). https://doi.org/10.1007/BF02623644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623644

Key words

Navigation