Skip to main content
Log in

Ornithine dissimilation byTreponema denticola

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Treponema denticola convertedl-ornithine, a product ofl-arginine catabolism, to putrescine via a decarboxylation reaction and to proline via a deamination reaction. Ornithine decarboxylation byT. denticola extracts was stimulated by pyridoxal 5′-phosphate. In the absence of pyridoxal 5′-phosphate, (NH4)2SO4-fractionated extracts converted ornithine to proline and ammonia. This activity was not stimulated by α-keto acids, nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide or ADP. Neither ornithine δ-transaminase (l-ornithine: 2-oxoacid aminotransferase, EC 2.6.1.13) nor Δ1 reductase [l-proline: NAD(P) 5-oxidoreductase, EC 1.5.1.2.] activity was detectable in cell extracts. These results indicate that formation of proline from ornithine inT. denticola is catalyzed by an enzyme system analogous to the ornithine cyclase (deaminating) ofClostridium sporogenes. Exogenous ornithine inhibited the growth ofT. denticola. Thus, in addition to generating putrescine and proline, the ornithine dissimilatory pathways may serve to prevent accumulation of inhibitory concentrations of ornithine in the spirochete's environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Applebaum, D. M., Dunlap, J. C., Morris, D. R. 1977. Comparison of the biosynthetic and biodegradative ornithine decarboxylases ofEscherichia coli. Biochemistry16:1580–1584.

    Article  PubMed  CAS  Google Scholar 

  2. Applebaum, D., Sabo, D. L., Fischer, E. H., Morris, D. R. 1975. Biodegradative ornithine decarboxylase ofEscherichia coli. Purification, properties and pyridoxal 5′-phosphate binding site. Biochemistry14:3675–3681.

    Article  PubMed  CAS  Google Scholar 

  3. Bacchi, C. J., Lipschik, G. Y., Nathan, H. C. 1977. Polyamines in trypanosomatids Journal of Bacteriology131:657–661.

    PubMed  CAS  Google Scholar 

  4. Blakemore, R. P., Canale-Parola, E. 1976. Arginine catabolism byTreponema denticola. Journal of Bacteriology128:616–622.

    PubMed  CAS  Google Scholar 

  5. Chinard, F. P. 1952. Photometric estimation of proline and ornithine. Journal of Biological Chemistry199:91–95.

    PubMed  CAS  Google Scholar 

  6. Costilow, R. N., Laycock, L. 1968. Proline as an intermediate in the reductive deamination of ornithine to δ-aminovaleric acid. Journal of Bacteriology96:1011–1020.

    PubMed  CAS  Google Scholar 

  7. Costilow, R. N., Laycock, L. 1969. Reactions involved in the conversion of ornithine to proline in clostridia. Journal of Bacteriology100:662–667.

    PubMed  CAS  Google Scholar 

  8. Costilow, R. N., Laycock, L. 1971. Ornithine cyclase (deaminating). Purification of a protein that converts ornithine to proline and definition of the optimal assay conditions. Journal of Biological Chemistry246:6655–6660.

    PubMed  CAS  Google Scholar 

  9. Cwyk, W. M., Canale-Parola, E. 1979.Treponema succinifaciens sp. nov., an anaerobic spirochete from the swine intestine. Archives of Microbiology122:231–239.

    Article  PubMed  CAS  Google Scholar 

  10. Gale, E. F. 1946. The bacterial amino acid decarboxylases, pp. 1–32. In: Nord, F. F. (ed.), Advances in enzymology, vol. 6, New York: Interscience.

    Google Scholar 

  11. Gerritsen, T., Rehberg, M. L., Waisman, H. A. 1965. On the determination of free amino acids in serum. Analytical Biochemistry11:460–466.

    Article  CAS  Google Scholar 

  12. Gochman, N., Meyer, R. K., Blackwell, R. Q., Fosdick, L. S. 1959. The amino acid decarboxylases of salivary sediment. Journal of Dental Research38:998–1003.

    PubMed  CAS  Google Scholar 

  13. Grettie, D. P., Bartos, D., Bartos, F., Smith, R. G., Campbell, R. A. 1978. Purification of radiolabeled polyamines and isolation of polyamines from serum by silica gel chromatography, pp. 13–21. In: Campbell, R. A., Morris, D. R., Bartos, D., Daves, G. D., Bartos, F. (eds.) Advances in polyamine research, vol. 2. New York: Raven Press.

    Google Scholar 

  14. Hammond, J. E., Herbst, E. J. 1968. Analysis of polyamines by thin-layer chromatography. Analytical Biochemistry22:474–484.

    Article  PubMed  CAS  Google Scholar 

  15. Hespell, R. B., Canale-Parola, E. 1971. Amino acid and glucose fermentation byTreponema denticola. Archiv für Mikrobiologie78:234–251.

    Article  PubMed  CAS  Google Scholar 

  16. Hyatt, A. T., Hayes, M. L. 1975. Free amino acids and amines in human dental plaque. Archives of Oral Biology20:203–209.

    Article  PubMed  CAS  Google Scholar 

  17. Jenkins, W. T., Tsai, H. 1970. Ornithine aminotransferase (pig kidney), pp. 281–285. In: Tabor, H., Tabor, C. W. (eds.), Methods in enzymology, vol. XVIIA. New York: Academic Press.

    Google Scholar 

  18. Kleinberg, I. 1970. Regulation of the acid-base metabolism of the dentogingival plaque and its relation to dental caries and periodontal disease. International Dental Journal20:451–465.

    PubMed  CAS  Google Scholar 

  19. Meister, A. 1965. Biochemistry of the amino acids, 2nd ed. New York, London: Academic Press.

    Google Scholar 

  20. Middelhoven, W. J. 1964. The pathway of arginine break-down inSaccharomyces cerevisiae. Biochimica et Biophysica Acta93:650–652.

    PubMed  CAS  Google Scholar 

  21. Muth, W. L., Costilow, R. N. 1974. Ornithine cyclase (deaminating). II. Properties of the homogeneous enzyme. Journal of Biological Chemistry249:7457–7462.

    PubMed  CAS  Google Scholar 

  22. Raina, A. 1963. Studies on the determination of spermidine and spermine and their metabolism in the developing chick embryo. Acta Physiologica Scandinavica 60, Suppl.218:1–81.

    Google Scholar 

  23. Rosen, H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics67:10–15.

    Article  PubMed  CAS  Google Scholar 

  24. Scher, W. I. Jr., Vogel, H. J. 1957. Occurrence of ornithine δ-transaminase: A dichotomy. Proceedings of the National Academy of Sciences of the United States of America43:796–803.

    Article  PubMed  CAS  Google Scholar 

  25. Spackman, D. H., Stein, W. H., Moore, S. 1958. Automatic recording apparatus for use in the chromatography of amino acids. Analytical Chemistry30:1190–1206.

    Article  CAS  Google Scholar 

  26. Stanton, T. B., Canale-Parola, E. 1979. Enumeration and selective isolation of rumen spirochetes. Applied and Environmental Microbiology38:965–973.

    PubMed  CAS  Google Scholar 

  27. Tabor, C. W., Tabor, H. 1976. 1,4-Diaminobutane (putrescine), spermidine and spermine. Annual Review of Biochemistry45:285–306.

    Article  PubMed  CAS  Google Scholar 

  28. Umbreit, W. W., Burris, R. H., Stauffer, J. F. 1964. Manometric techniques, 4th ed. Minneapolis: Burgess.

    Google Scholar 

  29. Wolfe, R. S. 1971. Microbial formation of methane, pp. 107–146. In: Rose, A. H., Wilkinson, J. F. (eds.), Advances in microbial physiology, vol. 6, New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leschine, S.B., Canale-Parola, E. Ornithine dissimilation byTreponema denticola . Current Microbiology 3, 305–310 (1980). https://doi.org/10.1007/BF02601811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02601811

Keywords

Navigation