Skip to main content
Log in

Amino acid and glucose fermentation by Treponema denticola

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

Treponema denticola was grown in serum-containing media to which 14C-labelled compounds were added. Determinations of radioactivity in the products formed indicated that the organism fermented alanine, cysteine, glycine, serine, and glucose. Fermentation products included acetate, lactate, succinate, formate, pyruvate, ethanol, CO2, H2S, and NH3. The products formed from glucose constituted a small portion of the total products. Assays of enzymatic activities in cell extracts indicated that the organism degraded glucose via the Embden-Meyerhof pathway. T. denticola possessed a coenzyme A-dependent CO2-pyruvate exchange activity associated with a clostridial-type clastic system for pyruvate metabolism. Phosphotransacetylase and acetate kinase activities were present in cell extracts. Acetyl phosphate formation and benzyl viologen reduction were detected when cell extracts were incubated with pyruvate, serine or cysteine. The data indicate that T. denticola is an amino acid fermenter and that it possesses the enzymes needed for the fermentation of glucose. However, glucose does not serve as the primary substrate when the organism grows in media including both this carbohydrate and amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajello, Francesca: Activation of acetate in the treponemes (pathogenic Pallidum and non pathogenic Reiter and Kazan treponemes). G. Microbiol. 17, 107–114 (1969).

    Google Scholar 

  • Barker, S. B., Summerson, W. H.: The colorimetric determination of lactic acid in biological material. J. biol. Chem. 138, 535–554 (1941).

    Google Scholar 

  • Breznak, J. A., Canale-Parola, E.: Spirochaeta aurantia, a pigmented, facultatively anaerobic spirochete. J. Bact. 97, 386–395 (1969).

    Google Scholar 

  • Burnett, G. W., Scherp, H. W.: Oral microbiology and infectious disease, 3rd ed. Baltimore: The Williams and Wilkins Co. 1968.

    Google Scholar 

  • Canale-Parola, E., Holt, S. C., Udris, Z.: Isolation of free-living, anaerobic spirochetes. Arch. Mikrobiol. 59, 41–48 (1967).

    Google Scholar 

  • —, Udris, Z., Mandel, M.: The classification of free-living spirochetes. Arch. Mikrobiol. 63, 385–397 (1968).

    Google Scholar 

  • Feigl, F.: Spot tests in inorganic analysis, 5th ed. New York: Elsevier Publishing Co. 1958.

    Google Scholar 

  • Feigl, F.: Spot tests in organic analysis, 6th ed. New York: Elsevier Publishing Co. 1960.

    Google Scholar 

  • Fogo, J. K., Popowsky, M.: Spectrophotometric determination of hydrogen sulfide. Anal. Chem. 21, 732–734 (1949).

    Google Scholar 

  • Friedemann, T. E., Haugen, G. E.: Pyruvic acid. II. The determination of keto acids in blood and urine. J. biol. Chem. 147, 415–442 (1943).

    Google Scholar 

  • Hespell, R. B., Canale-Parola, E.: Carbohydrate metabolism in Spirochaeta stenostrepta. J. Bact. 103, 216–226 (1970a).

    Google Scholar 

  • ——: Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch. Mikrobiol. 74, 1–18 (1970b).

    Google Scholar 

  • —, Joseph, R., Mortlock, R. P.: Requirement for coenzyme A in the phosphoroclastic reaction of anaerobic bacteria. J. Bact. 100, 1328–1334 (1969).

    Google Scholar 

  • Inouye, M., Pardee, A. B.: Requirement of polyamines for bacterial division. J. Bact. 101, 770–776 (1970).

    Google Scholar 

  • Kennedy, E. P., Barker, H. A.: Paper chromatography of volatile acids. Analyt. Chem. 23, 1033 (1951).

    Google Scholar 

  • Lipmann, F., Tuttle, L. C.: A specific micromethod for the determination of acyl phosphates. J. biol. Chem. 159, 21–28 (1945).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • McCormick, N. G., Ordal, E. J., Whiteley, H. R.: Degradation of pyruvate by Micrococcus lactilyticus. I. General properties of the formate-exchange reaction. J. Bact. 83, 887–898 (1962).

    Google Scholar 

  • Mortlock, R. P., Valentine, R. C., Wolfe, R. S.: Carbon dioxide activation in the pyruvate clastic system of Clostridium butyricum. J. biol. Chem. 234, 1653–1656 (1959).

    Google Scholar 

  • Neish, A. C.: Analytical methods for bacterial fermentations. Nat. Res. Council of Canada, Report No. 46-8-3 (2nd revision), Saskatoon 1952.

  • Peck, H. D., Jr., Gest, H.: A new procedure for assay of bacterial hydrogenases. J. Bact. 71, 70–80 (1956).

    Google Scholar 

  • Rose, I. A., Grunberg-Manago, M., Korey, S. R., Ochoa, S.: Enzymatic phosphorylation of acetate. J. biol. Chem. 211, 737–756 (1954).

    Google Scholar 

  • Socransky, S. S.: Relationship of bacteria to the etiology of periodontal disease. J. dent. Res. 49, 203–222 (1970).

    Google Scholar 

  • —, Listgarten, M., Hubersak, C., Cotmore, J., Clark, A.: Morphological and biochemical differentiation of three types of small oral spirochetes. J. Bact. 98, 878–882 (1969).

    Google Scholar 

  • Stadtman, E. R., Novelli, G. D., Lipmann, F.: Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J. biol. Chem. 191, 365–376 (1951).

    Google Scholar 

  • Stickland, L. H.: Studies in the metabolism of the strict anaerobes (genus Clostridium). I. The chemical reactions by which Cl. sporogenes obtains its energy. Biochem. J. 28, 1746–1759 (1934).

    Google Scholar 

  • — Studies in the metabolism of the strict anaerobes (genus Clostridium). III. The oxidation of alanine by Cl. sporogenes. IV. The reduction of glycine by Cl. sporogenes. Biochem. J. 29, 889–898 (1935).

    Google Scholar 

  • Strecker, H. J.: Formate fixation in pyruvate by Escherichia coli. J. biol. Chem. 189, 815–830 (1951).

    Google Scholar 

  • Swim, H. E., Utter, M. F.: Isotopic experimentation with intermediates of the tricarboxylic acid cycle. In: S. P. Colowick and N. O. Kaplan (edit.) Methods in enzymology, vol. 4, pp. 584–609. New York: Academic Press Inc. 1957.

    Google Scholar 

  • Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric techniques, 4th ed. Minneapolis, Minn.: Burgess Publishing Co. 1964.

    Google Scholar 

  • Warburg, O., Christian, W.: Isolierung und Kristallisation des Gärungsferments Enolase. Biochem. Z. 310, 384–421 (1942).

    Google Scholar 

  • Westerfeld, W. W.: A colorimetric determination of blood acetoin. J. biol. Chem. 161, 495–502 (1945).

    Google Scholar 

  • Wolfe, R. S., O'Kane, D. J.: Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J. biol. Chem. 205, 755–765 (1953).

    Google Scholar 

  • ——: Cofactors of the carbon dioxide exchange reaction of Clostridium butyricum. J. biol. Chem. 215, 637–643 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hespell, R.B., Canale-Parola, E. Amino acid and glucose fermentation by Treponema denticola . Archiv. Mikrobiol. 78, 234–251 (1971). https://doi.org/10.1007/BF00424897

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00424897

Keywords

Navigation