Skip to main content
Log in

Flow and fracture of bimaterial systems based on aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of property mismatches on constrained plastic flow in aluminum alloys was investigatedvia both finite element modeling (FEM) and experimentation. Double-notched tension tests on monolithic aluminum alloys and notched trilayer laminates, consisting of the aluminum alloy and a discontinuously reinforced aluminum material, were used to experimentally study the degree of constraint developed in aluminum alloys for use in bimaterial systems. Constraint levels in bimaterial systems were found to be affected by mismatches in elastic modulus and strength. The trends observed in the development of constrained plastic flow in these studies were rationalized based upon the effects of stress triaxiality on the flow and fracture behavior of the various aluminum alloys investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.F. Ashby, F.J. Blunt, and M. Bannister:Acta Metall., 1989, vol. 37, pp. 1847–57.

    Article  CAS  Google Scholar 

  2. H.C. Deve, A.G. Evans, G.R. Odette, R. Mehrabian, M.L. Emilaini, and R.J. Hecht:Acta Metall., 1990, vol. 38, pp. 1491–1502.

    Article  CAS  Google Scholar 

  3. P.A. Mataga:Acta Metall., 1989, vol. 37, pp. 3349–59.

    Article  CAS  Google Scholar 

  4. H.C. Cao and A.G. Evans:Acta Metall., 1991, vol. 39, pp. 2997–3005.

    Article  CAS  Google Scholar 

  5. J. Kajuch, J. Short, and J.J. Lewandowski:Acta Metall., 1995, vol. 43, pp. 1955–67.

    Article  CAS  Google Scholar 

  6. L. Xiao and R. Abbaschian:Metall. Trans. A, 1993, vol. 24A, pp. 403–15.

    CAS  Google Scholar 

  7. J. Kajuch, J.D. Rigney, and J.J. Lewandowski:Mater. Sci. Eng., 1992, vol. A115, pp. 59–65.

    Google Scholar 

  8. A.G. Evans and R. McMeeking:Acta Metall., 1986, vol. 34, pp. 2435–41.

    Article  Google Scholar 

  9. M. Manoharan, L. Ellis, and J.J. Lewandowski:Scripta Metall., 1990, vol. 24, pp. 1515–19.

    Article  CAS  Google Scholar 

  10. V.C. Nardone, J.R. Strife, and K.M. Prewo:Metall. Trans. A, 1991, vol. 22A, pp. 171–81.

    CAS  Google Scholar 

  11. C.K. Syn, D.R. Lesuer, and O.D. Sherby: inLight Materials for Transportation, N.J. Kim, ed., Kyongju, Korea, 1993, pp. 763–71.

    Google Scholar 

  12. T.M. Osman, P.M. Singh, and J.J. Lewandowski:Scripta Metall., 1994, vol. 10, pp. 607–12.

    Article  Google Scholar 

  13. L. Yost Ellis and J.J. Lewandowski:Mater. Sci. Eng., 1994, vol. A183, pp. 59–67.

    Google Scholar 

  14. T.M. Osman and J.J. Lewandowski:Mater. Sci. Technol., 1996, vol. 12, in press.

  15. D. Lesuer, C. Syn, R. Riddle, and O. Sherby: inIntrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems, J.J. Lewandowski and W.H. Hunt, Jr., eds., TMS, Warrendale, PA, 1995, pp. 93–102.

    Google Scholar 

  16. T.M. Osman, J.J. Lewandowski, W.H. Hunt, Jr., D.R. Lesuer, and R. Riddle: inIntrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems, J.J. Lewandowski and W.H. Hunt, Jr., eds., TMS, Warrendale, PA, 1995, pp. 103–11.

    Google Scholar 

  17. V.C. Nardone: inIntrinsic and Extrinsic Fracture Mechanisms in Inorganic Composite Systems, J.J. Lewandowski and W.H. Hunt, Jr., eds., TMS, Warrendale, PA, 1995, pp. 85–92.

    Google Scholar 

  18. J.G. Kaufman and M. Holt:Fracture Characteristics of Aluminum Alloys, Alcoa Research Laboratories Technical Paper No. 18, Aluminum Company of America, Pittsburgh, PA, 1965.

    Google Scholar 

  19. J.G. Kaufman:ASTM STP 514, ASTM, Philadelphia, PA, 1972, pp. 82–89.

    Google Scholar 

  20. H. Shimada and S. Moriya:Technology Reports, Tohoku University, Japan 1973, vol. 38, pp. 1–9.

    Google Scholar 

  21. H. Schwartzbart and W.F. Brown, Jr.:Trans. ASM, 1954, vol. 46, pp. 998–1020.

    Google Scholar 

  22. S. Kang and N.J. Grant:Mater. Sci. Eng., 1985, vol. 72, pp. 155–62.

    Article  CAS  Google Scholar 

  23. C.P. You, A.W. Thompson, and I.M. Bernstein:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 407–15.

    CAS  Google Scholar 

  24. B. Engelmann:NIKE2D: A Nonlinear, Implicit, Two-Dimensional Finite Element Code for Solid Mechanics, United States Department of Energy, Lawrence Livermore National Laboratory, Livermore, CA, 1991.

    Google Scholar 

  25. J.F. Knott:Engineering Fracture Mechanics, Butterworth and Co., London, 1973, pp. 32–45.

    Google Scholar 

  26. B.D. Flinn, M. Ruhle, and A.G. Evans:Acta Metall., 1989, vol. 37, pp. 3001–06.

    Article  CAS  Google Scholar 

  27. T.C. Lu, A.G. Evans, R.J. Hecht, and R. Mehrabian:Acta Metall., 1991, vol. 39, pp. 1853–62.

    Article  CAS  Google Scholar 

  28. B.J. Dalgleish, K.P. Trumble, and A.G. Evans:Acta Metall., 1989, vol. 37, pp. 1923–31.

    Article  CAS  Google Scholar 

  29. E. Orowan, J.F. Nye, and W.I. Cairns:MOS Arament Research Department Report No. 15/45, 1945, pp. 35–44.

  30. H.J. Saxton, A.J. West, and C.R. Barrett:Metall. Trans., 1971, vol. 2, pp. 999–1007.

    CAS  Google Scholar 

  31. H.J. Saxton, A.J. West, A.S. Tetelman, and C.R. Barrett:Metall. Trans., 1971, vol. 2, pp. 1009–17.

    Google Scholar 

  32. H.C. Cao, B.J. Dangleish, H.C. Deve, C. Elliott, A.G. Evans, R. Mehrabian, and G.R. Odette:Acta Metall., 1989, vol. 37, pp. 2969–77.

    Article  CAS  Google Scholar 

  33. M. Bannister and M.F. Ashby:Acta Metall., 1991, vol. 39, pp. 2575–82.

    Article  CAS  Google Scholar 

  34. K. Kuhne, J. Redmer, and W. Dahl:Eng. Fract. Mech., 1982, vol. 16, pp. 845–55.

    Article  Google Scholar 

  35. I.J. Polmear:Light Alloys: Metallurgy of Light Metals, Edward Arnold, London, 1989, pp. 100–85.

    Google Scholar 

  36. Aluminum: Properties and Physical Metallurgy, J.E. Hatch, ed., ASM INTERNATIONAL, Materials Park, OH, 1984, pp. 105–33.

    Google Scholar 

  37. J.J. Lewandowski and J.F. Knott:Strength of Metals and Alloys, H.J. McQuenn, J.-P. Bailon, J.I. Dickson, J.J. Jonas, and M.G. Akben, eds., Pergamon Press, Oxford, United Kingdom, 1985, pp. 1193–96.

    Google Scholar 

  38. D.J. Lloyd:Intrinsic and Extrinsic Fracture Mechanisms in Discontinuously Reinforced Composites, J.J. Lewandowski and W.H. Hunt, Jr., eds., TMS, Warrendale, PA, 1995, pp. 39–47.

    Google Scholar 

  39. J. Dundurs:J. Comp. Mater., 1967, vol. 1, pp. 310–322.

    Google Scholar 

  40. A. Romeo and R. Ballarini:Int. J. Fract., 1994, vol. 65, pp. 183–96.

    Google Scholar 

  41. T. Suga, G. Elssner, and S. Schmauder:J. Comp. Mater., 1988, vol. 22, pp. 917–34.

    Article  Google Scholar 

  42. R.O. Ritchie, R.M. Cannon, B.J. Dalgleish, R.H. Dauskardt, and J.M. McNaney:Mater. Sci. Eng., 1993, vol. A166, pp. 221–35.

    CAS  Google Scholar 

  43. I. Kirman:Metall. Trans., 1971, vol. 2, pp. 1761–70.

    CAS  Google Scholar 

  44. R.H. Van Stone, T.B. Cox, J.R. Low, and J.A. Psioda:Int. Metall. Rev., 1985, vol. 30, pp. 157–79.

    Google Scholar 

  45. J.W. Hancock and A.C. Mackenzie:J. Mech. Phys. Solids, 1976, vol. 24, pp. 147–69.

    Article  Google Scholar 

  46. A.C. Mackenzie, J.W. Hancock, and D.K. Brown:Eng. Fract. Mech., 1977, vol. 9, pp. 167–79.

    Article  CAS  Google Scholar 

  47. J.R. Rice and D.M. Tracey:J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17.

    Article  Google Scholar 

  48. P.F. Thomason:Acta Metall., 1981, vol. 29, pp. 763–77.

    Article  Google Scholar 

  49. B.I. Edelson and W.M. Baldwin:Trans. ASM, 1962, vol. 55, pp. 230–40.

    CAS  Google Scholar 

  50. G.C. Garrett and J.F. Knott:Metall. Trans. A, 1978, vol. 9A, pp. 1187–1201.

    CAS  Google Scholar 

  51. R.J. Klassen, G.C. Weatherly, and B. Ramaswami:Metall. Trans. A, 1992, vol. 23A, pp. 3273–80.

    CAS  Google Scholar 

  52. G.T. Hahn and A.R. Rosenfield:ASTM STP 432, ASTM, Philadelphia, PA, 1968, pp. 5–32.

    Google Scholar 

  53. H.L. Ewalds and R.J.H. Wanhill:Fracture Mechanics, Edward Arnold, London, 1985, pp. 269–76.

    Google Scholar 

  54. G. LeRoy, J.D. Embury, G. Edwar, and M.F. Ashby:Acta Metall., 1981, vol. 29, pp. 1509–22.

    Article  CAS  Google Scholar 

  55. W.M. Garrision, Jr. and N.R. Moody:J. Phys. Chem. Solids, 1987, vol. 48, pp. 1035–74.

    Article  Google Scholar 

  56. P.F. Thomason:Ductile Fracture of Metals, Pergamon Press, New York, NY, 1990, pp. 56–93.

    Google Scholar 

  57. J. Gurland and J. Plateau:Trans. ASM, 1963, vol. 56, pp. 442–43.

    CAS  Google Scholar 

  58. D.S. Liu and J.J. Lewandowski:Metall. Trans. A, 1993, vol. 24A, pp. 601–08.

    CAS  Google Scholar 

  59. D.S. Liu and J.J. Lewandowski:Metall. Trans. A, 1993, vol. 24A, pp. 609–15.

    CAS  Google Scholar 

  60. R.J. Klassen, G.C. Weatherly, and B. Ramaswami:Metall. Trans. A, 1992, vol. 23A, pp. 3281–91.

    CAS  Google Scholar 

  61. M.C. Tolle and M.E. Kassner:Acta Metall., 1995, vol. 43, pp. 287–97.

    CAS  Google Scholar 

  62. E.A. Almond, D.K. Brown, G.J. Davies, and A.M. Cottenden:Int. J. Mech. Sci., 1983, vol. 25, pp. 175–84.

    Article  Google Scholar 

  63. P. Kelly, D.A. Hills, and D. Nowell:Acta Metall., 1992, vol. 40, pp. 2149–54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osman, T.M., Lewandowski, J.J. Flow and fracture of bimaterial systems based on aluminum alloys. Metall Mater Trans A 27, 3937–3947 (1996). https://doi.org/10.1007/BF02595642

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595642

Keywords

Navigation