Skip to main content
Log in

Effects of alkali-metal impurities on fracture toughness of 2090 Al-Li-Cu extrusions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of alkali-metal impurity (AMI) content, temperature, and crack-mouth-opening displacement (CMOD) rate on the fracture toughness of 2090-T8 Al-Li-Cu alloy extrusions were studied, particularly for short-transverse (S-L) orientations. Decreasing AMI content resulted in increasing room-temperature fracture toughness, especially for underaged S-L and T-L specimens. Unlike most Al-Li based alloys, material with very low (<2 wt. ppm) AMIs produced by vacuum refining had a high S-L fracture toughness (up to 38 MPa√m for proof strengths ∼440 MPa) as well as high toughness in other orientations. The increase in room-temperature fracture toughness with decreasing AMI content was associated with a decrease in the proportion of brittle intergranular and cleavagelike islands, and a corresponding increase in the proportion of high energy dimpled fracture modes, on fracture surfaces. Both the present and previous studies indicate that the brittle islands result from liquid-metal embrittlement due to the presence of discrete sodium-potassium rich liquid phases. For medium to high AMI contents (5 to 37 wt ppm), S-L fracture toughness increased with decreasing temperature due to solidification of these phases and a consequent decrease in the mobility of embrittling atoms. The ability of embrittling atoms to keep up with crack tips also depended on crack velocity so that CMOD rate influenced fracture toughness. The grain structure (degree of recrystallization) appeared to be another important parameter affecting fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Sanders, E.A. Ludwiczak, and R.R. Sawtell:Mater. Sci. Eng., 1980, vol. 43, pp. 247–60.

    Article  CAS  Google Scholar 

  2. S. Suresh, A.K. Vasudévan, M. Tosten, and P.R. Howell:Acta Metall., 1987, vol. 35, pp. 25–46.

    Article  CAS  Google Scholar 

  3. A.K. Vasudévan and R.D. Doherty:Acta Metall., 1987, vol. 35, pp. 1193–1218.

    Article  Google Scholar 

  4. J.J. Lewandowski and N.J.H. Holroyd:Mater. Sci. Eng., 1990, vol. A123, pp. 219–27.

    CAS  Google Scholar 

  5. D.P. Hill, D.N. Williams, and C.E. Mobley:Aluminum-Lithium Alloys II, E.A. Starke, Jr. and T.H. Sanders, Jr., eds., TMS-AIME, Warrendale, PA, 1984, pp. 201–08.

    Google Scholar 

  6. S.P. Lynch, A.R. Wilson, and R.T. Byrnes:Mater. Sci. Eng., 1993, vol. A172, pp. 79–93.

    CAS  Google Scholar 

  7. S.P. Lynch:Mater. Sci. Eng., 1991, vol. A136, pp. 25–43.

    CAS  Google Scholar 

  8. D. Webster:Metall. Trans. A, 1987, vol. 18A, pp. 2181–93.

    CAS  Google Scholar 

  9. S.P. Lynch:Mater. Sci. Eng., 1991, vol. A136, pp. 45–57.

    CAS  Google Scholar 

  10. C.J. Peel, D. McDarmaid, and B.E. Evans:Proc. Conf. Aluminum-Lithium Alloys, R.J. Kar, S.P. Agrawal, and W.E. Quist, eds., ASM, Metals Park, OH, 1988, [pp. 315–37].

    Google Scholar 

  11. D.N. Fager, M.V. Hyatt, and H.T. Diep:Scripta Metall., 1986, vol. 20, pp. 1159–64.

    Article  Google Scholar 

  12. A.K. Vasudévan, A.C. Miller, and M.M. Kersker:Aluminum-Lithium Alloys II, E.A. Starke, Jr. and T.H. Sanders, Jr., eds., TMS-AIME, Warrendale, PA, 1984, pp. 181–99.

    Google Scholar 

  13. E.D. Sweet, S.P. Lynch, C.G. Bennett, I.J. Polmear, R.B. Nethercott, and I. Musulin: inProc. 4th Int. Conf. Aluminum Alloys: Their Physical and Mechanical Properties, T.H. Sanders, Jr. and E.A. Starke, Jr., eds., Georgia Institute of Technology, Atlanta, GA, 1994, vol. II, pp. 321–28.

    Google Scholar 

  14. C.G. Bennett, E.D. Sweet, J. Kotsios, and I. Musulin: inProc. 40th Sagamore Army Materials Research Conf.: Metallic Materials for Lightweight Applications, M.G.H. Wells, E.B. Kula, and J.H. Beaty, eds., U.S. Army Research Laboratory, Materials Directorate, Watertown, MA, 1993, pp. 185–95.

    Google Scholar 

  15. D.E.J. Talbot and C.E. Ransley:Metall. Trans. A, 1977, vol. 8, pp. 1149–54.

    Google Scholar 

  16. Z.Q. Zheng, M.G. Liu, X.Z. Liu, and D.F. Yin:Scripta Metall. Mater., 1994, vol. 30, pp. 31–36.

    Article  CAS  Google Scholar 

  17. S.P. Lynch:Mater. Sci. Technol., 1992, vol. 8, pp. 34–42.

    CAS  Google Scholar 

  18. W.S. Miller, M.P. Thomas, and J. White:Scripta Metall., 1987, vol. 21, pp. 663–68.

    Article  CAS  Google Scholar 

  19. D. Webster:Aluminium-Lithium Alloys III, C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, ed., Institute of Metals, London, 1986, pp. 602–09.

    Google Scholar 

  20. U.S. Patent Nos. 5 085 830, 5 320 803, and 5 422 066.

  21. S.P. Lynch:Acta Metall., 1981, vol. 29, pp. 325–40.

    Article  CAS  Google Scholar 

  22. S.P. Lynch:Mater. Sci. Eng., 1985, vol. 72, pp. L33-L37.

    Article  CAS  Google Scholar 

  23. S.P. Lynch:Metallography, 1989, vol. 23, pp. 147–71.

    Article  CAS  Google Scholar 

  24. T. Watanabe:Mater. Sci. Forum, 1989, vol. 46, pp. 25–48.

    Article  CAS  Google Scholar 

  25. L.C. Lim and T. Watanabe:Acta Metall. Mater., 1990, vol. 38, pp. 2507–16.

    Article  CAS  Google Scholar 

  26. Constitution of Binary Alloys, 2nd ed., M. Hansen, ed., McGraw-Hill, New York, NY, 1958, p. 875 and p. 899.

  27. T. Kobayashi, M. Niinomi, and K. Degawa:Mater. Sci. Technol., 1989, vol. 5, pp. 1013–19.

    CAS  Google Scholar 

  28. K. Jagannadham and H.G.F. Wilsdorf:Z. Metallkd., 1989, vol. 80, pp. 698–709.

    CAS  Google Scholar 

  29. D.L. Zhang and B. Cantor:Acta Metall. Mater., 1991, vol. 39, pp. 1595–1602.

    Article  CAS  Google Scholar 

  30. H. Saka, Y. Nishikawa, and T. Imura:Phil. Mag., 1988, vol. 57, pp. 895–906.

    CAS  Google Scholar 

  31. M.C. Roth, G.C. Weatherly, and W.A. Miller:Acta Metall., 1980, vol. 28, pp. 841–53.

    Article  CAS  Google Scholar 

  32. S.P. Lynch:Mater. Sci. Eng., 1989, vol. A108, pp. 203–12.

    CAS  Google Scholar 

  33. J. Newman and W.H. Smyrl:Metall. Trans., 1974, vol. 5, pp. 469–74.

    CAS  Google Scholar 

  34. K.T. Venkateswara Rao, Weikang Yu, and R.O. Ritchie:Metall. Trans. A, 1989, vol. 20A, pp. 485–97.

    Google Scholar 

  35. K.T. Venkateswara Rao and R.O. Ritchie:Acta Metall. Mater., 1990, vol. 38, pp. 2309–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweet, E.D., Bennett, C.G., Musulin, I. et al. Effects of alkali-metal impurities on fracture toughness of 2090 Al-Li-Cu extrusions. Metall Mater Trans A 27, 3530–3541 (1996). https://doi.org/10.1007/BF02595445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595445

Keywords

Navigation