Skip to main content
Log in

Pathogenetische Bedeutung der Gallensäuren

Pathogenic significance of bile acids

  • Übersichten
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

Because of their amphiphilic properties, bile acids have important physiological functions. However, they can also be pathogenetically active. Some recent findings on the biochemistry and enterohepatic circulation of bile acids are presented. In contrast to the adult liver where the only primary bile acids formed are cholic- and chenodeoxycholic acid, the foetal liver is able to synthesise a variety of “atypical” bile acids. Under certain circumstances, a retrograde differentiation is possible in the adult. The very effective transport systems in gut and in the sinusoidal and canalicular membrane of the liver cell limit the bile acids almost exclusively to the enterohepatic circulation. During transport in blood, through biomembranes and in the liver cell cytosol, bile acids are bound to carrier proteins. The carrier has been detected using photoaffinity labelling. Following biotransformation (sulphation and glucuronidation) pathogenetically active bile acids can be converted into derivatives which can be rapidly eliminated.

Disturbances of these mechanisms result in functional defects and diseases. The pathological significance of bile acids in hepato-biliary diseases is represented with regard to the cholestatic and proliferative effect of individual bile acids. The significance of bile acids in chologenic diarrhea, steatorrhea and enteral hyperoxaluria are presented as examples of the pathogenetic effects of bile acids on the gut. In these diseases it is possible to recognise the specific effects of certain bile acids on the colon mucosa. Recent studies have demonstrated that bile acids are possibly of pathogenetic significance in the case of epidemiologically proven relationship between colon carcinoma and high fat, high cholesterol and low fibre diets.

Zusammenfassung

Gallensäuren haben aufgrund ihrer amphiphilen Eigenschaften wichtige physiologische Funktionen, können aber auch pathogenetisch wirksam sein. Einige neuere Befunde zur Biochemie und enterohepatischen Zirkulation der Gallensäuren werden dargestellt. Während beim Erwachsenen nur Cholsäure und Chenodesoxycholsäure als primäre Gallensäuren in der Leber gebildet werden, ist die fötale Leber zur Synthese verschiedener „atypischer“ Gallensäuren befähigt. Unter besonderen Bedingungen ist beim Erwachsenen eine „Retrodifferenzierung“ möglich. Wirkungsvolle Transportsysteme im Darm und in der sinusoidalen und canaliculären Membran der Leberzellen bewirken, daß die Gallensäuren nahezu ausschließlich im enterohepatischen Kreislauf zirkulieren. Beim Transport im Blut, durch die Biomembranen und im Zytosol der Leberzelle sind Gallensäuren an Carrierproteine gebunden, die mit Hilfe der Photoaffinitätsmarkierung erfaßt wurden. Durch Biotransformation (Sulfatierung, Glukuronidierung) können pathogenetisch wirksame Gallensäuren in rasch eliminierbare Derivate übergeführt werden.

Störungen dieser Mechanismen führen zu Funktionsstörungen und Erkrankungen. Die pathogenetische Bedeutung der Gallensäuren bei hepatobiliären Erkrankungen wird im Hinblick auf den cholostatischen und proliferativen Effekt einzelner Gallensäuren erörtert. Als Beispiele pathogenetischer Effekte der Gallensäuren am Darm werden die Vorgänge bei der chologenen Diarrhoe und Steatorrhoe und bei enteraler Hyperoxalurie dargestellt; diese Erkrankungen lassen spezifische Wirkungen bestimmter Gallensäuren auf die Colonmukosa erkennen. Bei dem epidemiologisch nachgewiesenen Zusammenhang zwischen fett- und chloesterinreicher, faserarmer Kost und Coloncarcinom weisen neuere Untersuchungen auf die pathogenetische Bedeutung der Gallensäuren hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Abberger H, Buscher HP, Gerok W, Kramer W, Kurz G (1978) Identity of bile acids conjugating enzymes. Hoppe-Seyler's Z Physiol Chem 359:251

    Google Scholar 

  2. Abberger H, Bickel U, Buscher HP, Fuchte K, Gerok W, Kramer W, Kurz G (1979) Photoaffinity labelling as approach to metabolism and transport of bile acids in the liver. Eur Assoc Study of the Liver, 14th Meeting Düsseldorf

  3. Abberger H, Bickel U, Buscher HP, Fuchte K, Gerok W, Kramer W, Kurz G (1980) Transport of bile acids: Lipoproteins membrane polypeptides and cytosolic proteins as carriers. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids and lipids. Lancaster MTP-Press (in press)

  4. Ahlberg J, Angelin B, Björkhem I, Einarsson K (1977) Individual bile acids in portal venous and systemic blood serum of fasting man. Gastroenterology 73:1377–1382

    PubMed  CAS  Google Scholar 

  5. Anwer MS, Kroker R, Hegner D (1976) Cholic acid uptake into isolated rat hepatocytes. Hoppe-Seyler's Z Physiol Chem 357:1477–1486

    PubMed  CAS  Google Scholar 

  6. Anwer MS, Kroker R, Hegner D (1976) Effect of albumin on bile acid uptake by isolated rat hepatocytes. Is there a common bile acid carrier? Biochem Biophys Res Commun 73:63–71

    Article  PubMed  CAS  Google Scholar 

  7. Anwer MS, Hegner D (1978) Effect of Na+ on Bile Acid Uptake by Isolated Rat Hepatocytes. Evidence for a Heterogeneous System. Hoppe-Seyler's Z Physiol Chem 359:181–192

    PubMed  CAS  Google Scholar 

  8. Armstrong B, Doll R (1975) Environmental factors and cancer incidence and mortality in different countries with special reference to dietary pattern. Int J Cancer 15:617–631

    Article  PubMed  CAS  Google Scholar 

  9. Back P (1975) Evidence for bile salt glucuronides in cholestasis. In: Matern S, Hackenschmidt J, Back P, Gerok W (eds) Advances in bile acid research. Schattauer, Stuttgart, pp 149–152

    Google Scholar 

  10. Back P (1976) Bile acid glucuronides. II. Isolation and indentification of chenodeoxycholic acid glucuronide from human plasma in intrahepatic cholestasis. Hoppe-Seyler's Z Physiol Chem 357:213–217

    PubMed  CAS  Google Scholar 

  11. Back P (unveröffentlicht)

  12. Back P, Spaczynski K, Gerok W (1974) Bile salt glucuronides in urine. Hoppe-Seyler's Z Physiol Chem 355:749–752

    PubMed  CAS  Google Scholar 

  13. Back P, Sjövall J, Sjövall K (1974) Monohydroxy bile acids in plasma in intrahepatic cholestasis of pregnancy. Identification by computerized gaschromatography-mass spectrometry Med Biol 51:32–38

    Google Scholar 

  14. Back P, Bowen DV (1976) Bile acid glucuronides. III. Chemical synthesis and characterization of glucuronic acid coupled mono-, di-, and trihydroxy bile acids. Hoppe-Seyler's Z Physiol Chem 357:219–224

    PubMed  CAS  Google Scholar 

  15. Back P, Gerok W (1977) Differences in renal excretion between glyco-, tauroconjugates, sulfoconjugates and glucuronoconjugates by bile acids in cholestasis. In: Paumgartner G, Stiehl A (eds) Bile acid metabilism in health and disease. Lancaster MTP-Press, pp 93–100

  16. Back P, Gerok W (1978) Zum Effekt des Phenobarbitals bei intrahepatischer Cholestase. Stimulierung der Gallensäure-6α-Hydroxylierung. Inn Med 5:329–336

    Google Scholar 

  17. Back P, Walter K (1980) Developmental pattern of bile acids metabolism as revealed by bile acid analysis of meconium. Gastroenterology 78:671–676

    PubMed  CAS  Google Scholar 

  18. Back P, Walter K (1980) Retrodifferenzierung des Gallensäurenstoffwechsels bei Cholestase. Verh Dtsch Ges Inn Med 86:793–795

    CAS  Google Scholar 

  19. Bagheri SA, Bolt MG, Boyer JL, Palmer RH (1978) Stimulation of thymidine incorporation in mouse liver and biliary tract epithelium by lithocholate and deoxycholate. Gastroenterology 74:188–192

    PubMed  CAS  Google Scholar 

  20. Binder HJ (1978) Effect of dexamethasone on electrolyte transport in the large intestine of the rat. Gastroenterology 75:212–217

    PubMed  CAS  Google Scholar 

  21. Binder HJ, Filburn C, Volpe BT (1975) Bile salt alteration of colonic electrolyte transport: role of cyclic adenosine monophosphate. Gastroenterology 68:503–508

    PubMed  CAS  Google Scholar 

  22. Binder HJ, Dobbins JW, Racussen LC, Whiting DS (1978) Effect of Propranolol on Ricinoleic acid — and deoxycholic acid — induced changes of intestinal electrolyte movement and mucosal permeability. Gastroenterology 75:668–673

    PubMed  CAS  Google Scholar 

  23. Bremmelgaard A, Sjövall J (1979) Bile acid profiles in urine of patients with liver diseases. Eur J Clin Invest 9:341–348

    PubMed  CAS  Google Scholar 

  24. Bright-Astare P, Binder HJ (1973) Stimulation of colonic secretion of water and electrolytes by hydroxy fatty acid. Gastroenterology 64:81–88

    Google Scholar 

  25. Boyer JL (1978) Bile secretion and the pathogenesis of cholestasis. Viewpoints Digest Dis 10:69–72

    Google Scholar 

  26. Boyer JL, Layden TJ, Hruban Z (1977) Mechanisms of cholestasis — Taurolithocholate alters canalicular membrane composition, structure and permeability. In: Popper H, Bianchi L, Reutter W (eds) Membrane alterations as basis of liver injury. Lancaster MTP-Press, pp 353–369

  27. Burke CW, Lewis B, Panveliwalla BLD, Tabagchali S (1971) The Binding of cholic acid and its taurine conjugate to serum proteins. Clin Chim Acta 32:207–214

    Article  PubMed  CAS  Google Scholar 

  28. Burkitt DP (1975) Large bowel carcinogenesis: an epidemiologic puzzle. J Natl Cancer Inst 54:3–6

    PubMed  CAS  Google Scholar 

  29. Chadwick VS, Modha K, Dowling RH (1973) Mechanism for hyperoxaluria in patients with ileal dysfunction. N Engl J Med 289:172–176

    Article  PubMed  CAS  Google Scholar 

  30. Chadwick VS, Elias E, Bell GD, Dowling RH (1975) The role of bile acids in the increased intestinal absorption of oxalate after ileal resection. In: Matern S, Hackenschmidt J, Back P, Gerok W (eds) Advances in bile acid research. Schattauer, Stuttgart, pp 435–440

    Google Scholar 

  31. Chadwick VS, Gaginella TS, Carlson GL, Debongnie JC, Phillips SF, Hofmann AF (1979) Effect of molecular structure on bile acid-induced alterations in absorptive function, permeability and morphology in the perfused rabbit colon. J Lab Clin Med 94:661–673

    PubMed  CAS  Google Scholar 

  32. Conley DR, Coyne MJ, Chung A, Bonorris GG, Schoenfield LJ (1976) Bile acid stimulation of colonic adenylate cyclase and secretion in the rabbit. Am J Dig Dis 21:453–458

    Article  PubMed  CAS  Google Scholar 

  33. Coyne MJ, Bonorris GG, Chung A, Conley D, Schoenfield LJ (1977) Propranolol inhibits bile acid and fatty acid stimulation of cyclic AMP in human colon. Gastroenterology 73:971–974

    PubMed  CAS  Google Scholar 

  34. Dietschy JM, Salomon HS, Siperstein MD (1966) Bile acid metabolism. I. Studies on the meachnisms of intestinal transport. J Clin Invest 45:832–846

    PubMed  CAS  Google Scholar 

  35. Dietschy JM (1974) Bile acids: their absorption from the gastrointestinal tract and role during fat absorption Verh Dtsch Ges Inn Med 80:399–407

    PubMed  CAS  Google Scholar 

  36. Dobbins JLW, Binder HJ (1977) Derangements of oxalate metabolism in gastrointestinal disease and their mechanisms. In: Jerzy Glass GB (ed) Progress in gastroenterology, Vol 3. Grune & Stratton, New York, pp 505–518

    Google Scholar 

  37. Dobbins JW, Binder HJ (1977) Importance of the colon in enteric hyperoxaluria N Engl J Med 296:298–301

    Article  PubMed  CAS  Google Scholar 

  38. Einarsson K, Hellström K, Schersten T (1975) The formation of bile acids in patients with portal liver cirrhosis. Scand J Gastroenterol 10:209–304

    Google Scholar 

  39. Erlinger S, Poupon R, Glasinovic JC, Dumont M (1977) Hepatic uptake, storage and biliary transport maximum of bile acids in the dog. In: Paumgartner G, Stiehl A (eds) Bile acid metabolism in health and disease. Lancaster MTP-Press, pp 107–112

  40. Fairclough PD, Feest TG, Chadwick VS, Clark ML (1977) Effect of sodium chenodeoxycholate on oxalate absorption from the excluded human colon — a mechanism for ‘enteric’ hyperoxaluria. GUT 18:240–244

    PubMed  CAS  Google Scholar 

  41. Fröhling W, Stiehl A (1975) Bile Salt glucuronides in man: Identification and quantitative analysis. In: Matern S, Hakkenschmidt J, Back P, Gerok W (eds) Advances in bile acid research. Schatthauer, Stuttgart, pp 153–156

    Google Scholar 

  42. Fröhling W, Stiehl A (1976) Bile salt glucuronides: identification and quantitative analysis in the urine of patients with cholestasis. Eur J Clin Invest 6:67–74

    PubMed  Google Scholar 

  43. Fröhling W, Stiehl A, Czygan P, Liersch M, Kommerell B, Rotthauwe WH, Becker M (1977) Induction of bile acid glucuronide formation in children with intrahepatic cholestasis. In: Paumgartner G, Stiehl A (eds) Bile acid metabolism in health and disease. Lancaster MTP-Press, pp 101–104

  44. Fromm H, Hofmann AF (1975) The importance of bile acids in human diseases. Erg Inn Med Kindhlkd 37:149–192

    Google Scholar 

  45. Gelzayd EA, Breuter RI, Kirsner JB (1968) Nephrolithiasis in inflammatory bowel disease. Am J Dig Dis 13:1027–1034

    Article  PubMed  CAS  Google Scholar 

  46. Goldin B, Gorbach (1978) Viewpoints Digest Dis 10:2

    Google Scholar 

  47. Gordon SJ, Kinsey MD, Magen JS, Joseph RE, Kowlessar OD (1979) Structure of bile acids associated with secretion in the rat cecum. Gastroenterology 77:38–88

    PubMed  CAS  Google Scholar 

  48. Grossman MS, Nugent FW (1967) Urolithiasis as a complication of chronic diarrheal disease. Am J Dig Dis 12:491–498

    Article  PubMed  CAS  Google Scholar 

  49. Hayes JD, Strange RC, Percy-Robb IW (1979) Identification of two lithocholic acid-binding proteins. Separation of Ligandin from glutathione S-transferase B. Biochem J 181:699–708

    PubMed  CAS  Google Scholar 

  50. Hayes JD, Strange RC, Percy-Robb IW (1980) Cholic acid binding by glutathione S-transferases from rat liver cytosol. Biochem J 185:83–85

    PubMed  CAS  Google Scholar 

  51. Hofmann AF (1979) Acceptance Speech for the Beaumont Prize. Gastroenterology 77:955–966

    PubMed  CAS  Google Scholar 

  52. Javitt NB, Emerman S (1968) Effect of sodium taurolithocholate on bile flow and bile acid excretion. J Clin Invest 47:1002–1014

    PubMed  CAS  Google Scholar 

  53. Kakis G, Yousef IM, Fischer MM (1977) Studies on the binding of the bile acids by plasma proteins. Gastroenterology 72:1178

    Google Scholar 

  54. Kakis G, Yousef IM (1978) Pathogenesis of litholate- and taurolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology 75:595–607

    PubMed  CAS  Google Scholar 

  55. Killenberg PC, Jordan JT (1978) Purification and characterization of bile acid-CoA: amino acid-N-acyltranserase from rat liver. J Biol Chem 253:1005–1010

    PubMed  CAS  Google Scholar 

  56. King JE, Schoenfield LJ (1971) Cholestasis induced by sodium taurolithocholate in isolated hamster liver. J Clin Invest 50:2305–2312

    PubMed  CAS  Google Scholar 

  57. Krag E, Phillips SF (1972) Active and passive bile acid absorption in man. Perfusion studies of the ileum and jejunum. J Clin Invest 53:1686–1694

    Google Scholar 

  58. Kramer W (1981) Die Identifizierung Gallensäure-bindender Polypeptide durch Photoaffinitätsmarkierung. Inaugural-Diss., Freiburg

    Google Scholar 

  59. Kramer W, Buscher HP, Gerok W, Kurz G (1979) Bile salt binding to serum components: Taurocholate incorporation into high-density lipoprotein revealed by photoaffinity labelling. Eur J Biochem 102:1–9

    Article  PubMed  CAS  Google Scholar 

  60. Kramer W, Bickel U, Buscher HP, Gerok W, Kurz G (1980) Binding proteins for bile salts in plasma membrane fractions of rat liver. 13th Meeting Fed Eur Biochem Soc in Jerusalem, p 55 (Abstr)

  61. Kramer W, Bickel U, Buscher HP, Gerok W, Kurz G (1980) Binding proteins for bile acids in membranes of hepatocytes revealed by photoaffinity labelling. Hoppe-Seyler's Z Physiol Chem 361:1307

    Google Scholar 

  62. Layden TJ, Boyer JL (1977) Taurolithocholate-induced cholestasis: Taurocholate, but not Dehydrocholate, reverses cholestasis and bile canalicular membrane injury. Gastroenterology 73:120–128

    PubMed  CAS  Google Scholar 

  63. Layden TJ, Boyer JL (1978) Influence of bile acids on bile canalicular membrane morphology and the lobular gradient in canalicular size. Laboratory Invest 39:110–119

    CAS  Google Scholar 

  64. Levy D, Cheng S (1980) Photoaffinity labeling of anion transport compounds in hepatocyte plasma membranes. Ann NY Acad Sci 346:232–243

    Article  PubMed  CAS  Google Scholar 

  65. Liu K, Moss D, Persky V, Stamler J, Garside D, Soltero I (1979) Dietary cholesterol, fat and fibre, and colon-cancer mortality. An Analysis of international data. Lancet II:782–785

    Article  Google Scholar 

  66. Lööf L, Wengle B (1978) Enzymatic suphation of bile salts in human liver. Biochim Biophys Acta 530:451–460

    PubMed  Google Scholar 

  67. Lööf L, Wengle B (1979) Enzymatic sulphation of bile salts in man. Scand J Gastroenterol 14:513–519

    Article  PubMed  Google Scholar 

  68. Matern S, Gerok W (1979) Pathophysiology of the enterohepatic circulation of bile acids. Rev Physiol Biochem Pharmacol 85:125–204

    PubMed  CAS  Google Scholar 

  69. Matern S, Herz R, Gerok W (1979) Hepatische Nettoaufnahme individueller Gallensäuren bei Lebercirrhose. Z Gastroenterol 17:587–588

    Google Scholar 

  70. Matern H, Matern S, Schelzig Ch, Gerok W (1980) Bile acids UDP-Glucuronyltransferase from human liver. Properties and studies on aglucone substrate specifity. FEBS Lett 118:251–254

    Article  PubMed  CAS  Google Scholar 

  71. McCormick WC, Bell CC, Swell L, Vlahcevic ZR (1973) Cholic acid synthesis as an index of the severity of liver disease in man. GUT 14:895–902

    PubMed  Google Scholar 

  72. Mekhjian HS, Phillips SF, Hofmann AF (1979) Colonic absorption of unconjugates bile acids. Perfusion studies in man. Dig Dis Sci 24:545–550

    Article  PubMed  CAS  Google Scholar 

  73. Palmer RH (1967) The formation of bile acid sulfates: A new pathway of bile acid metabolism in humans. Proc Natl Acad Sci USA 58:1047–1050

    Article  PubMed  CAS  Google Scholar 

  74. Palmer RH (1977) Toxic effects of lithocholate on the liver and biliary tree. In: Taylor (ed) The hepatobiliary system. Fundamental and pathological mechanism. Plenum Press, New York, pp 227–243

    Google Scholar 

  75. Palmer RH (1979) Bile acid heterogenity and the gastrointestinal epithelium: from diarrhea to colon cancer. J Lab Clin Med 94:655–660

    PubMed  CAS  Google Scholar 

  76. Paumgartner G, Herz R, Sauter K, Schwarz HP (1974) Taurocholate excretion and bile formation in the isolated perfused rat liver. An in vitro — in vivo comparison. Naunyn-Schmiedeberg's Arch Pharmacol 285:165–174

    Article  CAS  Google Scholar 

  77. Paumgartner G, Reichen J, v Bergmann K, Preisig R (1975) Elaboration of hepatocytic bile. Bull NY Acad Med 51:455–471

    CAS  Google Scholar 

  78. Poupon RE, Poupon RY, Dumont M, Erlinger S (1976) Hepatic storage and biliary transport maximum of taurocholate and taurochenodeoxycholate in the dog. Eur J Clin Invest 6:431–437

    PubMed  CAS  Google Scholar 

  79. Reddy BS, Wynder E (1977) Metabolic epidemiology of colon cancer. Fecale bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer 39:2533–2539

    Article  PubMed  CAS  Google Scholar 

  80. Reddy BS, Watanabe K (1979) Effect of cholesterol metabolites and promoting effect of Lithocholic acid in colon carcinogenesis in germfree and conventional F 344 rats. Cancer Res 39:1521–1524

    PubMed  CAS  Google Scholar 

  81. Reichen J, Paumgartner G (1975) Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology 69:132–136

    Google Scholar 

  82. Reichen J, Paumgartner G (1976) Uptake of bile acids by perfused rat liver. Am J Physiol 231:734–742

    PubMed  CAS  Google Scholar 

  83. Reichen J, Paumgartner G (1977) Relationship between bile flow and Na+, K+-adenosine-triphosphatase in liver plasma membranes enhanced in bile canaliculi. J Clin Invest 60:429–434

    PubMed  CAS  Google Scholar 

  84. Reichen J, Preisig R, Paumgartner G (1977) Influence of chemical structure on hepatocellular uptake of bile acids. In: Paumgartner G, Stiehl A (eds) Bile acid metabolism in health and disease. Lancaster MTP-Press, pp 113–123

  85. Reichen J, Berk PD (1979) Isolation of an organic anion binding protein from rat liver plasma membrane fractions by affinity chromatography. Biochim Biophys Res Commun 91:484–489

    Article  CAS  Google Scholar 

  86. Richards TG (1975) In: Beck F, Loyd JB (eds) The cell in medical science. Academic Press, London, pp 393–417

    Google Scholar 

  87. Scharschmidt BF, Schmid R (1978) A quantitative assessment of the association of organic anions with mixed micelles and other macro-molecular aggregates in rat bile. J Clin Invest 62:1122–1131

    PubMed  CAS  Google Scholar 

  88. Schiff ER, Small NC, Dietschy JM (1972) Characterization of the Kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest 51:1351–1362

    PubMed  CAS  Google Scholar 

  89. Schwarz LR, Burr R, Schwenk M, Pfaff E, Greim H (1975) Uptake of taurocholic acid into isolated rat liver cells. Eur J Biochem 55:617–623

    Article  PubMed  CAS  Google Scholar 

  90. Schwarz LR, Schwenk M, Pfaff E, Greim H (1976) Excretion of taurocholate from isolated hepatocytes. Eur J Biochem 71:369–377

    Article  PubMed  CAS  Google Scholar 

  91. Sherr HP, Hofmann AF, Riordan E, Lorenzo D (1979) Endogenous oxalate formation: a new mechanism for enteric hyperoxaluria in intestinal bypass patients (Abstr). Gastroenterology 76:1245

    Google Scholar 

  92. Simon B, Czygan P, Stiehl A, Kather H (1978) Human colonic adenylate cyclase: effects of bile acids. Eur J Clin Invest 8:321–323

    PubMed  CAS  Google Scholar 

  93. Stiehl A, Ast E, Czygan P, Fröhling W, Raedsch R, Kommerell B (1978) Pool size, synthesis, and turnover of sulfated and nonsulfated cholic acid and chenodeoxycholic acid in patients with cirrhosis of the liver. Gastroenterology 74:572–577

    PubMed  CAS  Google Scholar 

  94. Strange RC, Nimmo IA, Percy-Robb IW (1976) Equilibriumdialysis studies of the interaction between cholic acid and 100 000 supernatants preparations from the rat liver. Biochem J 156:427–433

    PubMed  CAS  Google Scholar 

  95. Strange RC, Nimmo IA, Percy-Robb IW (1977) Binding of bile acids by 100 000 g supernatants from rat liver. Biochem J 162:659–664

    PubMed  CAS  Google Scholar 

  96. Taub M, Bonorris G, Chung A, Coyne MJ, Schoenfield JL (1977) Effect of propranolol on bile acid and cholera enterotoxin-stimulated cAMP and secretion in rabbit intestine. Gastroenterology 72:101–105

    PubMed  CAS  Google Scholar 

  97. Taub M, Coyne MJ, Bonorris GC, Chung A, Coyne B, Schoenfield LJ (1978) Inhibition by propranolol of bile acid and PGE1-stimulated cAMP and intestinal secretion. Am J Gastroenterol 70:129–135

    PubMed  CAS  Google Scholar 

  98. Tiribelli C, Lunazzi G, Luciani M, Panfili E, Gazzin B, Liut G, Sandri G, Sottocasa G (1978) Isolation of a sulfobromophthalein-binding protein from hepatocyte plasma membrane. Biochim Biophys Acta 532:105–112

    PubMed  CAS  Google Scholar 

  99. Vessey DA (1979) The co-purification and common identity of cholyl CoA: glycine-and cholyl. CoA: taurine-N-Acyltransferase activities from bovine liver. J Biol Chem 254:2059–2063

    PubMed  CAS  Google Scholar 

  100. Vlahcevic ZR, Buhac I, Farrar JT, Bell CC, Swell L (1971) Bile acid metabolism in patients with cirrhosis. I. Kinetic aspects of cholic acid metabolism. Gastroenterology 60:491–498

    PubMed  CAS  Google Scholar 

  101. Wilson FA, Dietschy JM (1972) Characterization of bile acid absorption across unstirred water layer and brush border of the rat jejunum. J Clin Invest 51:3015–3025

    PubMed  CAS  Google Scholar 

  102. Wolkoff AW, Chung CT (1980) Identification, purification, and partial characterization of an organic anion binding protein from rat liver cell plasma membrane. J Clin Invest 65:1152–1161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. P. Schölmerich zum 65. Geburtstag gewidmet

Erweiterte Fassung der State of the Art-Lecture beim Internationalen Kongress für Gastroenterologie, Hamburg 1980

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerok, W., Matern, S. Pathogenetische Bedeutung der Gallensäuren. Klin Wochenschr 59, 575–589 (1981). https://doi.org/10.1007/BF02593847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02593847

Key words

Schlüsselwörter

Navigation