Skip to main content
Log in

Modeling recrystallization kinetics in AA1050 following simulated breakdown rolling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A physical model based on the single grain approach is refined to predict the recrystallization kinetics of a single-phase alloy following hot deformation. The model involves the original and deformed grain geometry, the characteristics of the dislocation networks formed during deformation, and the average mobility of the moving interfaces. The model properly accounts for the effect of the concurrent recovery and textural components in the deformed microstructure on the recrystallization kinetics. Plane strain compression (PSC) tests on an AA1050 aluminum alloy were used to simulate the hot rolling deformation and to provide the necessary input and validation data. Using internal state variables of known magnitude and a single value for the interfacial mobility, a very good agreement between the model predictions and the experimental data were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Humphreys and M. Haltherly:Recrystallisation and Related Annealing Phenomena, Pergamon, London, 1996, pp. 1–491.

    Google Scholar 

  2. E. Nes, H.E. Vatne, O. Daaland, T. Furu, R. Orsund, and K. Marthinsen:Proc. 4th Int. Conf. of Aluminium Alloys, (ICAA4), Atlanta, GA, 1994, T.H. Sanders, Jr. and E.A. Starke, Jr. eds., pp. 18–49.

    Google Scholar 

  3. C.M. Sellars: inThermomechanical Processing in Theory, Modeling & Practice [TMP] 2, B. Hutchinsonet al., eds., Swedish Society for Metals Technology, ASM Stockholm, Sweden, 1996, pp. 35–51.

    Google Scholar 

  4. H.E. Vatne, T. Furu, R. Orsund, and E. Nes:Acta Mater., 1996, vol. 44, pp. 4463–73.

    Article  CAS  Google Scholar 

  5. E.M. Lauridsen, D.J. Jensen, H.F. Poulsen, and U. Lienert:Scripta Mater., 2000, vol. 43, pp. 561–66.

    Article  CAS  Google Scholar 

  6. L. Delannay, O.V. Mishin, D.J. Jensen, and P. van Houtte:Acta Mater., 2001, vol. 49, pp. 2441–51.

    Article  CAS  Google Scholar 

  7. S.P. Chen, D.N. Hanlon, S. van der Zwaag, Y.T. Pei, and J.T.M. de Hosson:J. Mater. Sci., 2002, vol. 37, pp. 989–95.

    Article  CAS  Google Scholar 

  8. T. Furu, K. Marthinsen, and E. Nes:Mater. Sci. Technol., 1990, vol. 6, pp. 1093–102.

    CAS  Google Scholar 

  9. S.P. Chen, I. Todd, and S. van der Zwaag:Metall. Mater. Trans. A, 2002, vol. 33A, pp. 529–37.

    Google Scholar 

  10. S.P. Chen and S. van der Zwaag:Metall. Mater. Trans. A, 2004, vol. 35A, pp. 741–49.

    CAS  Google Scholar 

  11. F.J. Humphreys:Acta Mater., 1997, vol. 45, pp. 4231–40.

    Article  CAS  Google Scholar 

  12. H.K.D.H. Bhadeshia:Worked Examples in the Geometry of Crystals, The Institute of Metal, London, 1987.

    Google Scholar 

  13. E. Nes:Acta Metall. Mater., 1995, vol. 43, pp. 2189–207.

    Article  CAS  Google Scholar 

  14. C.M. Sellars:Ironmaking and Steelmaking, 1995, vol. 22, pp. 459–64.

    CAS  Google Scholar 

  15. MARC:Users’ Manual, Marc Analysis Research Corporation, Palo Alto, CA, 1996.

    Google Scholar 

  16. D.R. Barraclough and C.M. Sellars:Met. Sci., 1979, vol. 13, pp. 257–68.

    CAS  Google Scholar 

  17. E.E. Underwood:Quantitative Microscopy, McGraw-Hill Book Co., New York, NY, 1968.

    Google Scholar 

  18. W.A. Johnson and R.F. Mehl:Trans. Am. Inst. Min (Metall.) Eng., 1939, vol. 135, pp. 416–43.

    Google Scholar 

  19. G.R. Speich and R.M. Fisher: inRecrystallisation, Grain Growth and Textures, H. Margolin, ed., ASM, Cleveland, OH, 1966, pp. 563–98.

    Google Scholar 

  20. E. Nes and T. Furu:Scripta Metall. Mater., 1995, vol. 33, pp. 87–92.

    Article  CAS  Google Scholar 

  21. G.M. Hood:Phil. Mag. A, 1969, vol. 21, pp. 305–24.

    Google Scholar 

  22. E.C.W. Perryman:Trans. AIME, J. Met., 1955, vol. 203, pp. 1053–61.

    Google Scholar 

  23. C.M. Sellars, A.M. Irisarri, and E.S. Puchi: inMicrostructural Control in Alminium Alloys: Deformation, Recovery and Recrystallisation, E. Henry Chia and H.J. McQueen, eds., TMS, Warrendale, PA, 1985, pp. 179–96.

    Google Scholar 

  24. K.D. Vernon-Parry, T. Furu, D.J. Jensen, and F.J. Humphreys:Mater. Sci. Technol., 1996, vol. 12, pp. 889–96.

    CAS  Google Scholar 

  25. H.J. Bunge: inTexture Analysis in Materials Science, Butterworth and Co., London, 1982.

    Google Scholar 

  26. C.V. Thompson, H.J. Frost, and F. Spaepen:Acta Metall., 1987, vol. 35, pp. 887–90.

    Article  CAS  Google Scholar 

  27. B. Verlinden, P. Ratchev, R. van den Broeck, and M.R. van der Winden:Proc. 1st Joint Int. Conf., Aachen, Germany, 2001, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, pp. 1329–35.

    Google Scholar 

  28. Y. Huang and F.J. Humphreys:Proc. 1st Joint Int. Conf., Aachen, Germany, 2001, G. Gottstein and D.A. Molodov, eds., Springer-Verlag, New York, NY, 2001, pp. 409–14.

    Google Scholar 

  29. G. Gottstein and L.S. Shvindlerman: inGrain Boundary Migration in Metals Thermodynamics, Kinetics, Applications, B. Ralph, ed., CRC Press, Boca Raton, FL, 1999, pp. 203–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S.P., Van der Zwaag, S. Modeling recrystallization kinetics in AA1050 following simulated breakdown rolling. Metall Mater Trans A 37, 2859–2869 (2006). https://doi.org/10.1007/BF02586118

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02586118

Keywords

Navigation