Skip to main content
Log in

Sensation and control of breathing: A dynamic model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A dynamic model of the CO2 respiratory control system is proposed, which can provide a qualitative basis for predicting breathing sensations. The discomfort index, which represents breathing sensations, is assumed to be composed of two sources: the arterial CO2 level and the respiratory motor command. The respiratory controller receives inhibitory neuromechanical and excitatory CO2 signals from the plant. The CO2 signal is enhanced by exercise stimuli. This dynamic multiplicative-type controller is used in simulations of key experiments: exercise and CO2 rebreathing with and without resistive loading. The dynamics of the discomfor index, the respiratory motor command, ventilation, and arterial CO2 concentration conform to the experimental data. The perceptual sensitivity to CO2 relative to respiratory effort is significantly correlated with the slope of hypercapnic ventilatory response. This result shows a clear linkage between ventilatory response and breathing sensations. Although it is shown that the automatic controller effectively minimizes the discomfort index for perturbations about an operating point under certain conditions, the discomfort index itself does not seem to be an underlying control principle of the proposed automatic controller model. Rather, breathing sensations may influence ventilatory responses by modifying the output of the automatic controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, L.; Lane, R.; Shea, S.A.; Cockcroft, A.; Guz, A. Breathlessness during different forms of ventilatory stimulation: A study of mechanisms in normal subjects and respiratory patients. Clin. Sci. Lond. 69:663–672; 1985.

    PubMed  CAS  Google Scholar 

  2. Arita, H.; Ichikawa, K.; Kuwana, S.; Kogo, N. Possible locations of pH-dependent central chemoreceptors: Intramedullary regions with acidic shift of extracellular fluid pH during hypercapnia. Brain Res. 485:285–293; 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Bellville, J.W.; Whipp, B.J.; Kaufman, R.D.; Swanson, G.D.; Aqleh, A.; Wiberg, D.M. Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects. J. Appl. Physiol. 46:843–853; 1979.

    PubMed  CAS  Google Scholar 

  4. Bennett, F.M.; Fordyce, W.E. Characteristics of the ventilatory exercise stimulus. Respir. Physiol. 59:55–63; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Cherniack, N.S.; Altose, M.D. Respiratory responses to ventilatory loading. In: Hornbein, T.F., ed. Regulation of breathing. New York: Dekker; 1981: vol. 17, part II, chapt. 14, pp. 905–964.

    Google Scholar 

  6. Cherniack, N.S. Potential role of optimization in alveolar hypoventilation and respiratory instability. In: Euler, C.V.; Lagercrantz, H., eds. Neurobiology of the control of breathing. New York: Raven Press; 1986: pp. 45–50.

    Google Scholar 

  7. Chonan, T.; Mulholland, M.B.; Cherniack, N.S.; Altose, M.D. Effects of constraining thoracic displacement and changes in chemical drive on the sensation of dyspnea. J. Appl. Physiol. 63(5):1822–1828; 1987.

    PubMed  CAS  Google Scholar 

  8. Chonan, T.; El Hefnawy, A.M.; Simonetti, O.P.; Cherniack, N.S. Rate of elimination of excess CO2 in humans. Respir. Physiol. 73:379–394; 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Chonan, T.; Mulholland, M.B.; Leitner, J.; Altose, M.D.; Cherniack, N.S. Comparisons of the sensation of dyspnea during hypercapnia, exercise and voluntary hyperventilation. Am. Rev. Respir. Dis. 135:A297; 1987. (Abstract)

    Google Scholar 

  10. Chonan, T.; Mulholland, M.B.; Leitner, J.; Altose, M.D.; Cherniack, N.S. Sensation of dyspnea during hypercapnia, exercise and voluntary hyperventilation. J. Appl. Physiol. 68(5):2100–2106; 1990.

    Article  PubMed  CAS  Google Scholar 

  11. Coleridge, H.M.; Coleridge, J.C. Reflexes evoked from tracheobronchial tree and lungs. In: Cherniack, N.S.; Widdicombe, J.G., eds. Handbook of physiology. The respiratory system. Control of breathing. Bethesda, MD: Am. Physiol. Soc.; 1986: sect. 3, vol. II, pp. 395–429.

    Google Scholar 

  12. Eldridge, F.L.; Millhorn, D.E. Oscillation, gating, and memory in the respiratory control system. In: Cherniack, N.S.; Widdicombe, J.G., eds. Handbook of physiology. The respiratory system. Control of breathing. Bethesda, MD: Am. Physiol. Soc.; 1986: sect. 3, vol. II, pp. 93–114.

    Google Scholar 

  13. El Hefnawy, A.M.; Saidel, G.M.; Bruce, E.N. CO2 control of the respiratory system: Plant dynamics and stability analysis. Ann. Biomed. Eng. 16:445–461; 1988.

    Article  Google Scholar 

  14. Gottfried, S.B.; Altose, M.D.; Kelson, S.G.; Fogarty, C.M.; Cherniack, N.S. The perception of changes in airflow resistance in normal subjects and patients with chronic airways obstruction. Chest 73: 286–288; 1978.

    PubMed  CAS  Google Scholar 

  15. Iber, C.; Berssenbrugge, A.; Skatrud, J.B.; Dempsey, J.A. Ventilatory adaptations to resistive loading during wakefulness and non-REM sleep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52(3):607–614; 1982.

    CAS  Google Scholar 

  16. Killian, K.J.; Mahutte, K.; Campbell, E.J.M. Magnitude scaling of externally added loads to breathing. Am. Rev. Respir. Dis. 123:12–15; 1981.

    PubMed  CAS  Google Scholar 

  17. Killian, K.J.; Gandevia, S.C.; Summers, E.; Campbell, E.J.M. Effect of increased lung volume on perception of breathlessness, effort, and tension. J. Appl. Physiol. 57:686–691; 1984.

    PubMed  CAS  Google Scholar 

  18. Kryger, M.H.; Yacoub, O.; Anthonisen, N.R. Effects of inspiratory resistance on occlusion pressure in hypoxia and hypercapnia. Respir. Physiol. 24:241–248; 1975.

    Article  PubMed  CAS  Google Scholar 

  19. Miyamoto, Y.; Hiura, T.; Tamura, T.; Nakamura, T.; Higuchi, J.; Mikami, T. Dynamics of cardiac, respiratory, and metabolic function in man in response to step work load. J. Appl. Physiol. 52:1198–1208; 1982.

    PubMed  CAS  Google Scholar 

  20. Phillipson, E.A. Control of breathing during sleep. Am. Rev. Respir. Dis. 118:909–939; 1978.

    PubMed  CAS  Google Scholar 

  21. Plum, F. Neurological integration of behavioral and metabolic control of breathing. In: Porter, R. ed. Breathing: Hering-Breuer Centenary Symposium. London: Churchill; 1970: pp. 159–175.

    Google Scholar 

  22. Poon, C.S. Optimal control of ventilation in hypoxia, hypercapnia and exercise. In: Whipp, B.J.; Wiberg, D.M., eds. Modelling and control of breathing. New York: Elsevier; 1983: pp. 189–196.

    Google Scholar 

  23. Poon, C.S.; Green, J.G. Control of exercise hyperpnea during hypercapnia in humans. J. Appl. Physiol. 59:792–797; 1985.

    PubMed  CAS  Google Scholar 

  24. Poon, C.S. Ventilatory control in hypercapnia and exercise: Optimization hypothesis. J. Appl. Physiol. 62:2447–2459; 1987.

    PubMed  CAS  Google Scholar 

  25. Poon, C.S. Effects of inspiratory resistive load on respiratory control in hypercapnia and exercise. J. Appl. Physiol. 66:2391–2399; 1989.

    PubMed  CAS  Google Scholar 

  26. Rigg, J.R.A.; Rebuck, A.S.; Campbell, D.J.C. A study of factors influencing relief of discomfort in breath-holding in normal subjects. Clin. Sci. Mol. Med. 47:193–199; 1974.

    PubMed  CAS  Google Scholar 

  27. Saunders, K.B. Oscillations of arterial CO2 tension in a respiratory model: Some implications for the control of breathing in exercise. J. Theor. Biol. 84:163–179; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Shannon, R. Reflexes from respiratory muscles and costvertebral joints. In: Cherniack, N.S.; Widdicombe, J.G., eds. Handbook of physiology. The Respiratory system. Control of breathing. Bethesda, MD: Am. Physiol. Soc.; 1986: sect. 3, vol. II, pp. 431–447.

    Google Scholar 

  29. Stark, R.D.; Gambles, S.A.; Lewis, J.A. Methods to assess breathlessness in healthy subjects: A critical evaluation and application to analyze the acute effects of diazepam and promethazine on breathlessness induced by exercise or by exposure to raised levels of carbon dioxide. Clin. Sci. Lond. 61:429–439; 1981.

    PubMed  CAS  Google Scholar 

  30. Stone, H.L.; Liang, I.Y.S. Cardiovascular response and control during exercise. Am. Rev. Respir. Dis. 129(Suppl.):S13-S16; 1984.

    PubMed  CAS  Google Scholar 

  31. Wasserman, K.; Whipp, B.J.; Casaburi, R. Respiratory control during exercise. In: Cherniack, N.S.; Widdicombe, J.G., eds. Handbook of physiology. The respiratory system. Control of breathing. Bethesda, MD: Am. Physiol. Soc.; 1986: sect. 3, vol. II, chapt. 17, pp. 595–619.

    Google Scholar 

  32. Wiegand, L.; Zwillich, C.W.; White, D.P. Sleep and the ventilatory response to resistive loading in normal man. J. Appl. Physiol. 64(3):1186–1195; 1988.

    PubMed  CAS  Google Scholar 

  33. Yamamoto, W.S. Computer simulation of ventilatory control by both neural and humoral CO2 signals. Am. J. Physiol. 238:R28-R35; 1980.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oku, Y., Saidel, G.M., Chonan, T. et al. Sensation and control of breathing: A dynamic model. Ann Biomed Eng 19, 251–272 (1991). https://doi.org/10.1007/BF02584302

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584302

Keywords

Navigation