Skip to main content
Log in

Analysis of the pressure-volume relationship of excised lungs

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The pressure-volume relationship of excised lungs is explicitly defined in the form of a mathematical model. In the model, lung volume (V) is given by the function V=V max F(Ptp, T*)H(Ptp).V max is maximum lung volume. F, which describes the recruitment of air-filled units, is a function of transpulmonary pressure (Ptp) and surface tension (T*), whereas H, which is also a function of transpulmonary pressure, describes the expansion of recruited units against tissue forces. F is shown to be the integral of the normalized distribution function of the lung units and remains constant so long as the number of air-filled units does not change. H, on the other hand, is shown to be the product of the elastic properties of the tissues and is responsible for the characteristic non-linear sigmoid shape of lung deflation curves. Results obtained with the model are consistent with the hypothesis that tissue elasticity, tissue hysteresis, area dependent surface tension, and recruitment share responsibility for the characteristic hysteresis of excised lungs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthonisen, N.R. Effect of volume and volume history of the lungs on pulmonary shunt flow.Am. J. Physiol. 207:235–238, 1964.

    PubMed  CAS  Google Scholar 

  2. Ardila, R., T. Horie, and J. Hildebrandt. Macroscopic isotropy of lung expansion.Respir. Physiol. 20:105–115, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Bachofen, H., J. Hildebrandt, and M. Bachofen. Pressure-volume curves of air- and liquid-filled excised lungs—surface tensionin situ.J. Appl. Physiol. 29:422–431, 1970.

    PubMed  CAS  Google Scholar 

  4. Bachofen, H. and J. Hildebrandt. Area analysis of pressure-volume hysteresis in mammalian lungs.J. Appl. Physiol. 30:493–497, 1971.

    PubMed  CAS  Google Scholar 

  5. Bernstein, L. The elastic pressure-volume curves of the lungs and thorax of the living rabbit.J. Physiol. (Lond) 138:473–487, 1957.

    CAS  Google Scholar 

  6. Brown, E.S., R.P. Johnson, and J.A. Clements. Pulmonary surface tension.J. Appl. Physiol. 14:717–720, 1959.

    PubMed  CAS  Google Scholar 

  7. Cavagna, G.A., E.J. Stemmler, and A.B. DuBois. Alveolar resistance to atelectasis.J. Appl. Physiol. 22:441–452, 1967.

    PubMed  CAS  Google Scholar 

  8. Clements, J.A., E.S. Brown, and R.P. Johnson. Pulmonary surface tension and the mucus lining of the lungs: Some theoretical considerations.J. Appl. Physiol. 12:262–268, 1958.

    PubMed  CAS  Google Scholar 

  9. Clements, J.A., R.F. Hustead, R.P. Johnson, and I. Gribetz. Pulmonary surface tension and alveolar stability.J. Appl. Physiol. 16:444–450, 1961.

    PubMed  CAS  Google Scholar 

  10. Fisher, M.J., M.F. Wilson, and K.C. Weber. Determination of alveolar surface area and tension fromin situ pressure-volume data.Respir. Physiol. 10:159–171, 1970.

    Article  PubMed  CAS  Google Scholar 

  11. Frazer, D.G. and G.N. Franz. Trapped gas and lung hysteresis.Respir. Physiol. 46:237–246, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Fry, D.L. A preliminary model for simulating the aerodynamics of the bronchial tree.Comput. Biomed. Res. 2:111–134, 1968.

    Article  PubMed  CAS  Google Scholar 

  13. Fukaya, H., C.J. Martin, A.C. Young and S. Katsura. Mechanical properties of alveolar walls.J. Appl. Physiol. 25:689–695, 1968.

    PubMed  CAS  Google Scholar 

  14. Fung, Y.C. A theory of elasticity of the lung.J. Appl. Mech. 41:8–14, 1974.

    Google Scholar 

  15. Gil, J. and E.R. Weibel. Morphological study of pressure-volume hysteresis in rat lungs fixed by vascular perfusion.Respir. Physiol. 15:190–213, 1972.

    Article  PubMed  CAS  Google Scholar 

  16. Glaister, D.H., R.C. Schroter, M.F. Sudlow, and J. Milic-Emili. Bulk elastic properties of excised lungs and the effect of a transpulmonary pressure gradient.Respir. Physiol. 17:347–364, 1973.

    Article  PubMed  CAS  Google Scholar 

  17. Hildebrandt, J., H. Fukaya, and C.J. Martin. Simple uniaxial and uniform biaxial deformation of nearly isotropic incompressible tissues.Biophys. J. 9:781–791, 1969.

    Article  PubMed  CAS  Google Scholar 

  18. Horie, T. and J. Hildebrandt. Volume history, static equilibrium, and dynamic compliance of excised cat lung.J. Appl. Physiol. 33:105–112, 1972.

    PubMed  CAS  Google Scholar 

  19. Klingele, T.G. and N.C. Staub. Alveolar shape changes with volume in isolated, air-filled lobes of cat lung.J. Appl. Physiol. 28:411–414, 1970.

    PubMed  CAS  Google Scholar 

  20. Lee, G.C. and A. Frankus. Elasticity properties of lung parenchyma derived from experimental distortion data.Biophys. J. 15:481–493, 1975.

    PubMed  CAS  Google Scholar 

  21. Mead, J., J.L. Whittenberger, and E.P. Radford, Jr. Surface tension as a factor in pulmonary volume-pressure hysteresis.J. Appl. Physiol. 10:191–196, 1957.

    PubMed  CAS  Google Scholar 

  22. Murphy, B.G. and L.A. Engel. Models of the pressure-volume relationship of the human lung.Respir. Physiol. 32:183–194, 1978.

    Article  PubMed  CAS  Google Scholar 

  23. Nielson, D. and D.B. Olsen. The role of alveolar recruitment and de-recruitment in pressure-volume hysteresis in lungs.Respir. Physiol. 32:63–77, 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Paiva, M., J.C. Yernault, P. van Eerdeweghe, and M. Englert. A sigmoid model of the static volume-pressure curve of human lung.Respir. Physiol. 23:317–323, 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Pardaens, J., K.P. van de Woestijne, and J. Clement. A physical model of expiration.J. Appl. Physiol. 33:479–490, 1972.

    PubMed  CAS  Google Scholar 

  26. Radford, E.P., Jr. Recent studies of mechanical properties of mammalian lungs. In:Tissue Elasticity. Washington, D.C.: American Physiological Society, 1957, pp. 177–190.

    Google Scholar 

  27. Radford, E.P., Jr. Static mechanical properties of mammalian lungs. In:Handbook of Physiology, Respiration, Vol. I, edited by W.O. Fenn and H. Rahn. Washington, D.C.: American Physiological Society, 1964, pp. 429–449.

    Google Scholar 

  28. Salmon, R.B., F.P. Primiano, Jr., G.M. Saidel, and D.E. Niewoehner. Human lung pressure-volume relationships: Alveolar collapse and airway closure.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 51:353–362, 1981.

    CAS  Google Scholar 

  29. Sanderson, R.J., G.W. Paul, A.E. Vatter, and G.F. Filley. Morphological and physical basis for lung surfactant action.Respir. Physiol. 27:379–392, 1976.

    Article  PubMed  CAS  Google Scholar 

  30. Scarpeli, E.M.The Surfactant System of the Lung. Philadelphia: Lea and Febiger, 1968.

    Google Scholar 

  31. Slama, H., W. Schoedel, and E. Hansen. Lung surfactant: Film kinetics at the surface of an air bubble during prolonged oscillation of its volume.Respir. Physiol. 19:233–243, 1975.

    Article  Google Scholar 

  32. Smaldone, G.C., W. Mitzner, and H. Itoh. Role of alveolar recruitment in lung inflation: Influence on pressure-volume hysteresis.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 55:1321–1332, 1983.

    CAS  Google Scholar 

  33. Sugihara, T., J. Hildebrandt, and C.J. Martin. Visocelastic properties of alveolar wall.J. Appl. Physiol. 33:93–98, 1972.

    PubMed  CAS  Google Scholar 

  34. Tai, R.C., and G.C. Lee. Isotropy and homogeneity of lung tissue deformation.J. Biomech. 14:243–252, 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Wilson, T.A. Surface tension-surface area curves calculated from pressure volume loops.J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 53:1512–1520, 1982.

    CAS  Google Scholar 

  36. Young, S.L.D., F. Tierney, and J.A. Clements. Mechanism of compliance change in excised rat lungs at low transpulmonary pressure.J. Appl. Physiol. 29:780–785, 1970.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axe, J.R., Abbrecht, P.H. Analysis of the pressure-volume relationship of excised lungs. Ann Biomed Eng 13, 101–117 (1985). https://doi.org/10.1007/BF02584233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584233

Keywords

Navigation