Skip to main content
Log in

Measurements of the thermal diffusivity of aluminum using frequency-scanned, transient, and rate window photothermal radiometry. Theory and experiment

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal diffusivity of various types of aluminum has been measured, using a completely noncontact experimental configuration based on infrared photothermal radiometry. Photothermal response transients, conventional frequency scans, and pulse duration- or repetition rate-scanned rate windows have been investigated. It has been shown that the conventional frequency scan is not suitable for measurements of aluminum with a short thermal transport time such as foils, due to an extremely degraded signal-to-noise ratio (SNR). Also, it has been found that the conventional frequency scan method is less sensitive to the actual value of thermal diffusivity than the rate-window scan. The rate-window method, furthermore, gives superior SNR especially for thin metals and yields excellent agreement between the theory and the data. An advantage of the pulse duration-scanned rate window mode is that it does not require knowledge of the instrumental transfer function as an input. The transient response gives the worst SNR but is best for the physical interpretation of the photothermal signals. In addition, it has been shown that the infrared photothermal radiometric transmission mode is less sensitive to surface roughness than the reflection mode and, therefore, is preferable for thermal diffusivity measurements of aluminum and of good thermal conductors, in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Munidasa, T.-C. Ma, A. Mandelis, S. K. Brown, and L. Mannik,Mat. Sci. Eng. A159:111 (1992).

    Google Scholar 

  2. E. V. Kudryivtsev,Unsteady State Heat Transfer (Hiffe Book, London, 1966), p. 94.

    Google Scholar 

  3. H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, 2nd ed., (Oxford University. Oxford, 1959).

    Google Scholar 

  4. W. P. Leung and A. C. Tam,J. Appl. Phys. 56:153 (1984).

    Article  ADS  Google Scholar 

  5. Z.-H. Chen and A. Mandelis,Phys. Rer. B 46:13526 (1992).

    Article  ADS  Google Scholar 

  6. A. Mandelis and Z.-H. Chen,Rev. Sci. Instrum. 63:2977 (1992).

    Article  ADS  Google Scholar 

  7. A. Mandelis,Rer. Sci. Instrum. 65:3309 (1994).

    Article  ADS  Google Scholar 

  8. P. E. Nordal and S. O. Kanstad,Phys. Scripta 20:659 (1979).

    Article  ADS  Google Scholar 

  9. R. E. Imhof, B. Zhang, and D. J. S. Birch, inProgress in Photothermal and Photoacoustic Science and Technology, Vol. II, A. Mandelis, ed., (Prentice Hall, Englewood Cliffs, NJ. 1994). Chap. 7.

    Google Scholar 

  10. Supplied by ALCAN, Kingston, ON.

  11. F. Kreith,Principles of Heat Transfer (IEP-A Dun-Donnelley, New York, 1976).

    Google Scholar 

  12. E. R. G. Eckert and R. M. Drake,Analysis of Heat and Mass Transfer (McGraw Hill, New York, 1972).

    MATH  Google Scholar 

  13. D. J. Crowther and J. Padet,Int. J. Heat Mass Transfer 34:3075 (1991).

    Article  Google Scholar 

  14. A. Mandelis,J. Appl. Phys. 78:647 (1995).

    Article  ADS  Google Scholar 

  15. P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw Hill, New York, 1953), p. 864.

    MATH  Google Scholar 

  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical Methods in C. 2nd ed. (Cambridge University Press, Cambridge, 1992), pp. 354–366.

    Google Scholar 

  17. L. Qian and P. Li,Appl. Opt. 29:4241 (1990).

    ADS  Google Scholar 

  18. M. Munidasa and A. Mandelis,Rev. Sci. Instrum. 65:2344 (1994).

    Article  ADS  Google Scholar 

  19. R. S. Quimby and W. M. Yen,Appl. Phys. Lett. 35:43 (1979).

    Article  ADS  Google Scholar 

  20. W. D. Lawson and J. W. Sabey, inResearch Techniques in NDT, R. S. Sharpe, ed. Academic, London, 1970, Chap. 4.

    Google Scholar 

  21. M. G. Dreyfus,Appl. Opt. 2:1113 (1963).

    Article  ADS  Google Scholar 

  22. D. L. Balageas, J. C. Krapez, and P. Cielo,J. Appl. Phys. 59:348 (1986).

    Article  ADS  Google Scholar 

  23. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolaou,Thermophysical Properties of Matter, Vol. 10 (IFI Plenum, New York, 1973).

    Google Scholar 

  24. X. Zhang and C. Grigoropoulos,Rer. Sci. Instrum. 66:1115 (1995).

    Article  ADS  Google Scholar 

  25. A. Rosencwaig and A. Gersho,J. Appl. Phys. 47:64 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacCormack, E., Mandelis, A., Munidasa, M. et al. Measurements of the thermal diffusivity of aluminum using frequency-scanned, transient, and rate window photothermal radiometry. Theory and experiment. Int J Thermophys 18, 221–250 (1997). https://doi.org/10.1007/BF02575209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575209

Keywords

Navigation